X-ray holograms expose secret magnetism

Unlike conventional magnets, antiferromagnets (such as the metal chromium) are materials which exhibit ‘secret’ magnetism, undetectable at a macroscopic level. Instead, their magnetism is confined to very small regions where atoms behave as tiny magnets. They spontaneously align themselves opposite to adjacent atoms, leaving the material magnetically neutral overall.

Professor Gabriel Aeppli, Director of the London Centre for Nanotechnology, said: “People have been familiar with ferromagnets for hundreds of years and they have countless everyday uses; everything from driving electrical motors to storing information on hard disk drives. We haven’t been able to make the same strides with antiferromagnets because we weren’t able to look inside them and see how they were ordered.

“This breakthrough takes our understanding of the internal dynamics of antiferromagnets to where we were ninety years ago with ferromagnets. Once you can see something, it makes it that much easier to start engineering it.”

The magnetic characteristics of ferromagnets have been studied by scientists since Greek antiquity, enabling them to build up a detailed picture of the regions – or “magnetic domains” – into which they are divided. However, antiferromagnets remained a mystery because their internal structure was too fine to be measured.

The internal order of antiferromagnets is on the same scale as the wavelength of x-rays (below 10 nanometers). The latest research used x-ray photon correlation spectroscopy to produce ‘speckle’ patterns; holograms which provide a unique ‘fingerprint’ of a particular magnetic domain configuration.

Dr. Eric D. Isaacs, Director of the Center for Nanoscale Materials, said: “Since the discovery of x-rays over 100 years ago, it has been the dream of scientists and engineers to use them to make holographic images of moving objects, such as magnetic domains, at the nanoscale.

“This has only become possible in the last few years with the availability of sources of coherent x-rays, such as the Advanced Photon Source, and the future looks even brighter with the development of fully coherent x-ray sources called Free Electron Lasers over the next few years.”

In addition to producing the first antiferromagnet holograms, the research also showed that their magnetic domains shift over time, even at the lowest of temperatures. The most likely explanation for this can be found in quantum mechanics and the experiments open the door to the future exploitation of antiferromagnets in emerging technologies such as quantum computing.

“The key finding of our research provides information on the stability of domain walls in antiferromagnets,” said Oleg Shpyrko, lead author on the publication and researcher at the Center for Nanoscale Materials. “Understanding this is the first step towards engineering antiferromagnets into useful nanoscale devices that exploit it.”

Work at the London Centre for Nanotechnology was funded by a Royal Society Wolfson Research Merit Award and the Basic Technologies program of Research Councils UK. Work at the Center for Nanoscale Materials and the Advanced Photon Source was supported by the DOE Office of Science, Office of Basic Energy Sciences. The work at the University of Chicago was supported by the National Science Foundation.

Media Contact

David Weston alfa

More Information:

http://www.ucl.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Rocks with the oldest evidence yet of Earth’s magnetic field

The 3.7 billion-year-old rocks may extend the magnetic field’s age by 200 million years. Geologists at MIT and Oxford University have uncovered ancient rocks in Greenland that bear the oldest…

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Partners & Sponsors