Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New VERITAS telescope array may help find 'dark matter'

02.05.2007
Scientists in the Northern Hemisphere have opened a new window on the universe allowing them to explore and understand the cosmos at a much higher level of precision than was previously available.

Think of it as acquiring a new pair of glasses that allow you to see more clearly. These new "glasses" are VERITAS, (the Very Energetic Radiation Imaging Telescope Array System), a major new ground-based gamma-ray observatory, designed to provide an in-depth examination of the universe.

VERITAS is an array of four large optical reflectors that detects high-energy gamma rays by observing the light from secondary showers of particles that these gamma rays generate in the atmosphere. The U.S. Department of Energy's Argonne National Laboratory is a collaborator on the program and will provide input to the analysis of the data that the array produces over the next several years.

"It is expected that this instrument will allow for the detection of an increased number of gamma ray sources, possibly even the indirect detection of the mysterious dark matter in the universe," said Karen Byrum, Argonne physicist.

The telescopes are located at a temporary site in the Coronado National Forest in Mt. Hopkins, Ariz., where they will be operated for two years in an engineering mode while a permanent site is acquired. During these two years, a number of key science projects will be undertaken, as well as collaborative observations with the National Aeronautic and Space Administration's next generation gamma-ray space telescope, GLAST, scheduled for launch later this year.

The sensitive instrumentation of VERITAS has an energy threshold for gamma rays of about 100 GeV and can readily identify sources with an intensity of about 1 photon per minute with an observation lasting an hour. This makes it the most sensitive instrument in the northern hemisphere at these energies.

As a collaborator, Argonne participates in the Dark Matter Key Science Project, the Gamma Ray Burst Key Science Project, the Blazar Key Science Project and will assist in research and development for VERITAS upgrades and for the next generation observatory, which is already being planned.

"Through involvement in the VERITAS collaboration, we are examining other ways to look at high energy physics and bringing to the forefront other topics connected to it," explained Hendrik (Harry) J. M. Weerts, director of Argonne's High Energy Physics Division. "The universe with gamma ray bursts, supernovae, and active galactic nuclei, possess nature's most powerful accelerators."

With involvement in the project since its implementation in 1996, David Schramm Postdoctoral Fellow Deirdre Horan serves as Argonne's lead researcher in the collaboration. She hopes to address fundamental physics through the use of this instrumentation, perform more precise observations of black hole systems, and better understand how the universe was formed.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>