Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water flows like molasses on the nanoscale

A Georgia Tech research team has discovered that water exhibits very different properties when it is confined to channels less than two nanometers wide – behaving much like a viscous fluid with a viscosity approaching that of molasses. Determining the properties of water on the nanoscale may prove important for biological and pharmaceutical research as well as nanotechnology. The research appears in the March 15 issue of the journal Physical Review B.

In its bulk liquid form, water is a disordered medium that flows very readily. When most substances are compressed into a solid, their density increases. But water is different; when it becomes ice, it becomes less dense. For this reason, many scientists reasoned that when water is compressed (as it is in a nanometer-sized channel), it should maintain its liquid properties and shouldn't exhibit properties that are akin to a solid. Several earlier studies came to that very conclusion – that water confined in a nano-space behaves just like water does in the macro world. Consequently, a number of scientists considered the case to be closed.

But when Georgia Tech experimental physicist Elisa Riedo and her team directly measured the force of pure water in a nanometer-sized channel, they found evidence suggesting that water was organized into layers. Riedo conducted these measurements by recording the force placed on a silicon tip of an atomic force microscope as it compressed water. The water was confined in a nanoscale thin film on top of a solid surface.

"Since water usually has a low viscosity, the force you would expect to feel as you compress it should be very small," said Riedo, assistant professor in Georgia Tech's School of Physics. "But when we did the experiment, we found that when the distance between the tip and the surface is about one nanometer, we feel a repulsive force by the water that is much stronger than what we would expect."

As the tip compresses the water even more, the repulsive force oscillates, indicating that the water molecules are forming layers. As the tip continues to increase its pressure on a layer, the layer collapses and the water flows out horizontally.

"In effect, the confined water film behaves effectively like a solid in the vertical direction by forming layers parallel to the confining tip and surface, while maintaining it's liquidity in the horizontal direction where it can flow out – resembling some phases of liquid crystals," said Uzi Landman, director of the Center for Computational Materials Science, Regents' and Institute professor, and Callaway Chair of Physics at Georgia Tech.

A theoretical physicist, Landman conducted the first-ever computer simulations of these forces for tip-confined water films and found good correspondence between his team's theoretical predictions and the experiments.

So why did Riedo and Landman's results differ from their peers? According to Landman, most previous studies on confined water were limited by technology at the time and could not directly measure the behavior in the last two nanometers. Instead they had to measure other properties and infer the forces acting in films of one nanometer thickness or less.

"If you want force, it is preferable to measure it," he said. "This is the first experiment to directly measure the force and it's the first simulation done of these forces. The fact that we have direct measurements married with theoretical results is rather conclusive."

Riedo and Landman conducted their experiments in several different environments. They found that the layering effect was more pronounced when water was placed on top of hydrophilic surfaces that allow water to wet the solid surface, such as glass. When the water was confined by hydrophobic surfaces where water tends to bead up, like graphite, the effect was still present, but less pronounced.

At the same time, Riedo's team was measuring the vertical force exerted on the tip by the confined water film, they also measured the film viscosity by measuring the lateral force. They found that when water was placed on a hydrophilic surface, the viscosity began to increase dramatically as the thickness of the confined film reached the 1.5 nanometer range. As they continued to compress the water and measure the lateral forces, the viscosity increased by a factor of 1,000 to 10,000.

On hydrophobic surfaces, they did not see such an increase in viscosity. The results of the molecular dynamics simulations support these findings, showing a dramatically decreased mobility for sub-nanometer thick water films under hydrophilic confinement.

"Water is a wonderful lubricant," said Riedo, "but it flows too easily for many applications. At the one nanometer scale, water is a viscous fluid and could be a much better lubricant."

Understanding the properties of water at this scale could also be important for biological and pharmaceutical research, especially in understanding processes that depend on hydrated ionic transport through nanoscale channels and pores.

Riedo and Landman's next steps are to introduce impurities in the water to study how that affects its properties.

David Terraso | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>