Revamped experiment could detect elusive particle

But University of Florida physicists have proposed a way to do just that, a step they say considerably improves the chance of detecting one of the universe’s most elusive particles, a candidate for the common but mysterious dark matter.

In a paper that appears online today in the journal Physical Review Letters, physicists at the University of Florida and Lawrence Livermore National Laboratory propose a redesign of the experiment currently being attempted in various forms by several groups of physicists worldwide. Although theoretical at the moment, they say their design could make such experiments a billion times more sensitive in their goal of detecting axions.

Axions are elemental particles whose confirmation would shed light on several different conundrums in particle physics. These could include pinning down the nature of dark matter, the mysterious substance said to make up 30 percent of the universe but so far observed only indirectly by its effects.

“A half dozen groups want to do this experiment, and some of them probably will try this approach,” said Pierre Sikivie, a faculty member in UF’s physics department and an author of the paper. “It works in principle, but in reality it will take some effort to set this up right so that it can produce a result.”

The unimproved experiment seeks to detect axions by shining a laser down the bore of a powerful superconducting magnet. A wall in the middle stops the laser cold, with the theoretical axions continuing through the wall and into the other side of the magnet. There, the magnet reconverts them into photons, or particles of light.

The detection of this light “reappearing” on the other side of the wall is what gives the experiment its iconic name.

Researchers in the U.S. and Europe are in various stages of conducting the experiment. The activity has been stimulated by a recent Italian experiment that claims to have discovered axion-like particles. The hope is to confirm the Legnaro National Laboratories’ results or take them a step further.

Sikivie, UF physics professor David Tanner and Karl van Bibber, a physicist at the Lawrence Livermore National Laboratory, propose a redesign of the “shining light through walls” experiment to make it, in their words, “vastly more sensitive.”

In a nutshell, they suggest placing pairs of highly reflective mirrors called Fabry-Perots cavities on both sides of the wall. The cavity on the laser light side of the wall would cause the light to bounce back and forth repeatedly, as though in an echo chamber. This action would produce many more of the hypothesized axions than a single beam of light, making them easier to detect on the other side of the wall.

“What happens is, because the light goes back and forth many times as it goes through the magnet, it produces more axions,” Sikivie said.

The Fabry-Perot cavity on the other side of the wall would perform a similar function, producing even more photons from the added axions.

Sikivie said researchers are doing separate experiments to detect axions produced by the sun, which would seem to be an easier approach because the sun is a much more powerful source than any laser. But the modified experiment would at least in theory have a higher sensitivity than these solar-based experiments.

“With these two cavities on both sides, it actually gets better, by a factor of 10 maybe, than the solar axion experiments,” he said.

Media Contact

Pierre Sikivie EurekAlert!

More Information:

http://www.phys.ufl.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors