Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model describes avalanche behavior of superfluid helium

26.04.2007
By utilizing ideas developed in disparate fields, from earthquake dynamics to random-field magnets, researchers at the University of Illinois have constructed a model that describes the avalanche-like, phase-slip cascades in the superflow of helium.

Just as superconductors have no electrical resistance, superfluids have no viscosity, and can flow freely. Like superconductors, which can be used to measure extremely tiny magnetic fields, superfluids could create a new class of ultra-sensitive rotation sensors for use in precision guidance systems and other applications.

But, before new sensors can be built, scientists and engineers must first acquire a better understanding of the odd quirks of superfluids arising in these devices.

In the April 23 issue of Physical Review Letters, U. of I. physicist Paul Goldbart, graduate student David Pekker and postdoctoral research associate Roman Barankov describe a model they developed to explain some of those quirks, which were found in recent experiments conducted by researchers at the University of California at Berkeley.

In the Berkeley experiments, physicist Richard Packard and his students Yuki Sato and Emile Hoskinson explored the behavior of superfluid helium when forced to flow from one reservoir to another through an array of several thousand nano-apertures. Their intent was to amplify the feeble whistling sound of phase-slips associated with superfluid helium passing through a single nano-aperture by collecting the sound produced by all of the apertures acting in concert.

At low temperatures, this amplification turned out, however, to be surprisingly weak, because of an unanticipated loss of synchronicity among the apertures.

"Our model reproduces the key physical features of the Berkeley group's experiments, including a high-temperature synchronous regime, a low-temperature asynchronous regime, and a transition between the two," said Goldbart, who also is a researcher at the university's Frederick Seitz Materials Research Laboratory.

The theoretical model developed by Pekker, Barankov and Goldbart balances a competition between interaction and disorder – two behaviors more commonly associated with magnetic materials and sliding tectonic plates.

The main components of the researchers' model are nano-apertures possessing different temperature-dependent critical flow velocities (the disorder), and inter-aperture coupling mediated by superflow in the reservoirs (the interactions).

For helium, the superfluid state begins at a temperature of 2.18 kelvins. Very close to that temperature, inter-pore coupling tends to cause neighbors of a nano-aperture that already has phase-slipped also to slip. This process may cascade, creating an avalanche of synchronously slipping phases that produces a loud whistle.

However, at roughly one-tenth of a kelvin colder, the differences between the nano-apertures dominate, and the phase-slips in the nano-apertures are asynchronous, yielding a non-avalanching regime. The loss of synchronized behavior weakens the whistle.

"In our model, competition between disorder in critical flow velocities and effective inter-aperture coupling leads to the emergence of rich collective dynamics, including a transition between avalanching and non-avalanching regimes of phase-slips," Goldbart said. "A key parameter is temperature. Small changes in temperature can lead to large changes in the number of phase-slipping nano-apertures involved in an avalanche."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>