Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic solar cell efficiency breaks record at WFU nanotechnology center

23.04.2007
The global search for a sustainable energy supply is making significant strides at Wake Forest University as researchers at the university’s Center for Nanotechnology and Molecular Materials have announced that they have pushed the efficiency of plastic solar cells to more than 6 percent.

In a paper to be published in an upcoming issue of the journal Applied Physics Letters, Wake Forest researchers describe how they have achieved record efficiency for organic or flexible, plastic solar cells by creating “nano-filaments” within light absorbing plastic, similar to the veins in tree leaves. This allows for the use of thicker absorbing layers in the devices, which capture more of the sun’s light.

Efficient plastic solar cells are extremely desirable because they are inexpensive and light weight, especially in comparison to traditional silicon solar panels. Traditional solar panels are heavy and bulky and convert about 12 percent of the light that hits them to useful electrical power. Researchers have worked for years to create flexible, or “conformal,” organic solar cells that can be wrapped around surfaces, rolled up or even painted onto structures.

Three percent was the highest efficiency ever achieved for plastic solar cells until 2005 when David Carroll, director of the Wake Forest nanotechnology center, and his research group announced they had come close to reaching 5 percent efficiency.

Now, a little more than a year later, Carroll said his group has surpassed the 6 percent mark.

"Within only two years we have more than doubled the 3 percent mark,” Carroll said. “I fully expect to see higher numbers within the next two years, which may make plastic devices the photovoltaic of choice.”

In order to be considered a viable technology for commercial use, solar cells must be able to convert about 8 percent of the energy in sunlight to electricity. Wake Forest researchers hope to reach 10 percent in the next year, said Carroll, who is also associate professor of physics at Wake Forest.

Because they are flexible and easy to work with, plastic solar cells could be used as a replacement for roof tiling or home siding products or incorporated into traditional building facades. These energy harvesting devices could also be placed on automobiles. Since plastic solar cells are much lighter than the silicon solar panels structures do not have to be reinforced to support additional weight.

A large part of Carroll’s research is funded by the United States Air Force, which is interested in the potential uses of more efficient, light-weight solar cells for satellites and spacecraft. Other members of Carroll’s research team include Jiwen Liu and Manoj Namboothiry, postdoctoral associates at Wake Forest’s nanotechnology center, and Kyungkon Kim, a postdoctoral researcher at the center, who has moved to the Materials Science & Technology Division at the Korea Institute of Science and Technology in Seoul.

Jacob McConnico | EurekAlert!
Further information:
http://www.wfu.edu

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>