Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State astrophysicists provide the eyes for new gamma ray telescope system

23.04.2007
There's a "First Light Fiesta" in the works at Mt. Hopkins near Amado, Ariz. And Iowa State University astrophysicists will be among those enjoying the celebration of a new telescope system and all the science it will produce.

Each of the four VERITAS cameras created by Iowa State researchers contains 500 photon detectors that can see particle showers created by gamma rays hitting the earth's atmosphere. Photo contributed by Frank Krennrich.

The $20 million VERITAS telescope system -- that's the Very Energetic Radiation Imaging Telescope Array System -- at the Fred Lawrence Whipple Observatory south of Tucson doesn't look like the telescope you used in high school. It's made of four reflectors 12 meters across that look like satellite dishes. The reflectors are covered with mirrors that direct light into cameras attached to the front of each dish. Each camera is about 7 feet across and contains 500 tube-shaped photon detectors or pixels. The telescope system is based on techniques Iowa State researchers Richard Lamb and David Carter-Lewis helped develop in the 1980s.

All those detectors for the VERITAS system were built in a laboratory on the fourth floor of Iowa State's Zaffarano Physics Addition. It took about $1 million and a lot of work by Iowa State post-doctoral researchers Tomoyuki Nagai and Martin Schroedter to do it.

Frank Krennrich, an Iowa State professor of physics and astronomy and leader of Iowa State's work on the VERITAS project, said the telescope system will be looking for gamma rays from space.

VERITAS is the northern hemisphere's most sensitive instrument for finding that high energy electromagnetic radiation. And gamma rays do have lots of energy: the energy of visible light is one electron volt; gamma rays have energies of one million to one trillion electron volts.

Even with all that energy, the rays can't penetrate the earth's atmosphere. But when they hit the atmosphere they create showers of electrons and positrons that create a blue light known as Cerenkov radiation. The showers move very fast. And they're not very bright.

So it takes a powerful instrument to find them. The astronomers say VERITAS is proving to be as sensitive as they expected.

"The quality of the data is so much better," Krennrich said. "The more telescopes you have, the higher the resolution for these measurements."

That's good news to Martin Pohl, an Iowa State assistant professor of physics and astronomy who's working to analyze and explain the data from the VERITAS observations, and Asif Imran, an Iowa State doctoral student whose dissertation includes the analysis of VERITAS data.

"Being able to see more precisely allows you to ask more precise questions," Pohl said.

Astrophysicists now know that gamma rays are produced by supermassive black holes, supernova remnants, pulsars, gamma ray bursts and other space objects. The crab Nebula is one source of gamma rays.

Researchers believe more knowledge of gamma rays could help them explore distant regions of space, help them look for evidence of dark matter, determine how much electromagnetic radiation the universe has produced, answer questions about the formation of stars and help explain the origins of the most energetic radiation in the universe.

Without the improvements in data now being produced by VERITAS, "You're like a fish on the beach," Pohl said.

And so these Iowa State astrophysicists have good reason to celebrate the telescope system's first light April 27-29 in the Arizona mountains.

"This is a pretty big deal," Krennrich said. "We have worked 10 years on this."

Frank Krennrich | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>