Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State astrophysicists provide the eyes for new gamma ray telescope system

23.04.2007
There's a "First Light Fiesta" in the works at Mt. Hopkins near Amado, Ariz. And Iowa State University astrophysicists will be among those enjoying the celebration of a new telescope system and all the science it will produce.

Each of the four VERITAS cameras created by Iowa State researchers contains 500 photon detectors that can see particle showers created by gamma rays hitting the earth's atmosphere. Photo contributed by Frank Krennrich.

The $20 million VERITAS telescope system -- that's the Very Energetic Radiation Imaging Telescope Array System -- at the Fred Lawrence Whipple Observatory south of Tucson doesn't look like the telescope you used in high school. It's made of four reflectors 12 meters across that look like satellite dishes. The reflectors are covered with mirrors that direct light into cameras attached to the front of each dish. Each camera is about 7 feet across and contains 500 tube-shaped photon detectors or pixels. The telescope system is based on techniques Iowa State researchers Richard Lamb and David Carter-Lewis helped develop in the 1980s.

All those detectors for the VERITAS system were built in a laboratory on the fourth floor of Iowa State's Zaffarano Physics Addition. It took about $1 million and a lot of work by Iowa State post-doctoral researchers Tomoyuki Nagai and Martin Schroedter to do it.

Frank Krennrich, an Iowa State professor of physics and astronomy and leader of Iowa State's work on the VERITAS project, said the telescope system will be looking for gamma rays from space.

VERITAS is the northern hemisphere's most sensitive instrument for finding that high energy electromagnetic radiation. And gamma rays do have lots of energy: the energy of visible light is one electron volt; gamma rays have energies of one million to one trillion electron volts.

Even with all that energy, the rays can't penetrate the earth's atmosphere. But when they hit the atmosphere they create showers of electrons and positrons that create a blue light known as Cerenkov radiation. The showers move very fast. And they're not very bright.

So it takes a powerful instrument to find them. The astronomers say VERITAS is proving to be as sensitive as they expected.

"The quality of the data is so much better," Krennrich said. "The more telescopes you have, the higher the resolution for these measurements."

That's good news to Martin Pohl, an Iowa State assistant professor of physics and astronomy who's working to analyze and explain the data from the VERITAS observations, and Asif Imran, an Iowa State doctoral student whose dissertation includes the analysis of VERITAS data.

"Being able to see more precisely allows you to ask more precise questions," Pohl said.

Astrophysicists now know that gamma rays are produced by supermassive black holes, supernova remnants, pulsars, gamma ray bursts and other space objects. The crab Nebula is one source of gamma rays.

Researchers believe more knowledge of gamma rays could help them explore distant regions of space, help them look for evidence of dark matter, determine how much electromagnetic radiation the universe has produced, answer questions about the formation of stars and help explain the origins of the most energetic radiation in the universe.

Without the improvements in data now being produced by VERITAS, "You're like a fish on the beach," Pohl said.

And so these Iowa State astrophysicists have good reason to celebrate the telescope system's first light April 27-29 in the Arizona mountains.

"This is a pretty big deal," Krennrich said. "We have worked 10 years on this."

Frank Krennrich | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>