Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State astrophysicists provide the eyes for new gamma ray telescope system

23.04.2007
There's a "First Light Fiesta" in the works at Mt. Hopkins near Amado, Ariz. And Iowa State University astrophysicists will be among those enjoying the celebration of a new telescope system and all the science it will produce.

Each of the four VERITAS cameras created by Iowa State researchers contains 500 photon detectors that can see particle showers created by gamma rays hitting the earth's atmosphere. Photo contributed by Frank Krennrich.

The $20 million VERITAS telescope system -- that's the Very Energetic Radiation Imaging Telescope Array System -- at the Fred Lawrence Whipple Observatory south of Tucson doesn't look like the telescope you used in high school. It's made of four reflectors 12 meters across that look like satellite dishes. The reflectors are covered with mirrors that direct light into cameras attached to the front of each dish. Each camera is about 7 feet across and contains 500 tube-shaped photon detectors or pixels. The telescope system is based on techniques Iowa State researchers Richard Lamb and David Carter-Lewis helped develop in the 1980s.

All those detectors for the VERITAS system were built in a laboratory on the fourth floor of Iowa State's Zaffarano Physics Addition. It took about $1 million and a lot of work by Iowa State post-doctoral researchers Tomoyuki Nagai and Martin Schroedter to do it.

Frank Krennrich, an Iowa State professor of physics and astronomy and leader of Iowa State's work on the VERITAS project, said the telescope system will be looking for gamma rays from space.

VERITAS is the northern hemisphere's most sensitive instrument for finding that high energy electromagnetic radiation. And gamma rays do have lots of energy: the energy of visible light is one electron volt; gamma rays have energies of one million to one trillion electron volts.

Even with all that energy, the rays can't penetrate the earth's atmosphere. But when they hit the atmosphere they create showers of electrons and positrons that create a blue light known as Cerenkov radiation. The showers move very fast. And they're not very bright.

So it takes a powerful instrument to find them. The astronomers say VERITAS is proving to be as sensitive as they expected.

"The quality of the data is so much better," Krennrich said. "The more telescopes you have, the higher the resolution for these measurements."

That's good news to Martin Pohl, an Iowa State assistant professor of physics and astronomy who's working to analyze and explain the data from the VERITAS observations, and Asif Imran, an Iowa State doctoral student whose dissertation includes the analysis of VERITAS data.

"Being able to see more precisely allows you to ask more precise questions," Pohl said.

Astrophysicists now know that gamma rays are produced by supermassive black holes, supernova remnants, pulsars, gamma ray bursts and other space objects. The crab Nebula is one source of gamma rays.

Researchers believe more knowledge of gamma rays could help them explore distant regions of space, help them look for evidence of dark matter, determine how much electromagnetic radiation the universe has produced, answer questions about the formation of stars and help explain the origins of the most energetic radiation in the universe.

Without the improvements in data now being produced by VERITAS, "You're like a fish on the beach," Pohl said.

And so these Iowa State astrophysicists have good reason to celebrate the telescope system's first light April 27-29 in the Arizona mountains.

"This is a pretty big deal," Krennrich said. "We have worked 10 years on this."

Frank Krennrich | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>