Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark matter haloes favour Frisbee over Rugby

20.04.2007
A new study of dark matter haloes indicates that they are shaped like Frisbees, not Rugby-balls as has been suggested. Aaron Robotham, of the University of Bristol, will be presenting the results at the Royal Astronomical Society’s National Astronomy Meeting in Preston on Friday 20th April.

A group from the University of Bristol and the Cerro-Tololo Inter-American Observatory in Chile has developed a sophisticated computer model to work out the three-dimensional shape of the dark matter using the positions of groups of galaxies which are embedded the haloes. Dark matter haloes are studded with galaxies but being discrete objects the true halo shape may not be apparent by just simply measuring their distribution.

The new model is able to fill in the gaps with an unprecedented degree of accuracy, presenting a truer picture of the shape of the ellipsoids. The results for the corrected data show that the dark matter haloes are non-spherical but flattened out like a Frisbee, most preferentially in the smallest groups of galaxies. When the group had analysed the raw data the ellipsoids had appeared to be shaped like a Rugby ball or American Football, which was also the shape preferred by previous studies.

“Our findings are that dark matter haloes are Frisbee shaped, that means that dark matter is not simply spherically distributed, and indicates that filamentary structure is not a strong influence on the shape of the group halo- prolate shapes would be strongly favoured in this case” said Robotham. “The apparent oblate shapes that are allowed after correction mirrors that seen for the Local Group and has often been suggested in computer models.”

The shape of dark matter haloes gives us information about how the early universe formed and how the haloes have evolved. According to cosmological theory, soon after the Big Bang cold dark matter formed the universe’s first large-scale structures, which then collapsed under their own weight to form vast halos. The gravitational pull of these haloes sucked in normal matter and provided a focus for the formation of galaxies. How the shape of these halos have evolved over time is a subject of much debate, complicated by a vast number of factors that mean extremely large samples are required in order to extract meaningful statistics.

The scientists used the 2-degree Field Percolation Inferred Galaxy Groups (2PIGG) catalogue, the largest survey of galaxy groups that is publicly available. The group’s findings have been submitted for publication in the Astrophysical Journal.

Anita Heward | alfa
Further information:
http://www.nam2007.uclan.ac.uk/info.php
http://www.ras.org.uk//index.php?option=com_content&task=view&id=1181

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>