Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark matter haloes favour Frisbee over Rugby

20.04.2007
A new study of dark matter haloes indicates that they are shaped like Frisbees, not Rugby-balls as has been suggested. Aaron Robotham, of the University of Bristol, will be presenting the results at the Royal Astronomical Society’s National Astronomy Meeting in Preston on Friday 20th April.

A group from the University of Bristol and the Cerro-Tololo Inter-American Observatory in Chile has developed a sophisticated computer model to work out the three-dimensional shape of the dark matter using the positions of groups of galaxies which are embedded the haloes. Dark matter haloes are studded with galaxies but being discrete objects the true halo shape may not be apparent by just simply measuring their distribution.

The new model is able to fill in the gaps with an unprecedented degree of accuracy, presenting a truer picture of the shape of the ellipsoids. The results for the corrected data show that the dark matter haloes are non-spherical but flattened out like a Frisbee, most preferentially in the smallest groups of galaxies. When the group had analysed the raw data the ellipsoids had appeared to be shaped like a Rugby ball or American Football, which was also the shape preferred by previous studies.

“Our findings are that dark matter haloes are Frisbee shaped, that means that dark matter is not simply spherically distributed, and indicates that filamentary structure is not a strong influence on the shape of the group halo- prolate shapes would be strongly favoured in this case” said Robotham. “The apparent oblate shapes that are allowed after correction mirrors that seen for the Local Group and has often been suggested in computer models.”

The shape of dark matter haloes gives us information about how the early universe formed and how the haloes have evolved. According to cosmological theory, soon after the Big Bang cold dark matter formed the universe’s first large-scale structures, which then collapsed under their own weight to form vast halos. The gravitational pull of these haloes sucked in normal matter and provided a focus for the formation of galaxies. How the shape of these halos have evolved over time is a subject of much debate, complicated by a vast number of factors that mean extremely large samples are required in order to extract meaningful statistics.

The scientists used the 2-degree Field Percolation Inferred Galaxy Groups (2PIGG) catalogue, the largest survey of galaxy groups that is publicly available. The group’s findings have been submitted for publication in the Astrophysical Journal.

Anita Heward | alfa
Further information:
http://www.nam2007.uclan.ac.uk/info.php
http://www.ras.org.uk//index.php?option=com_content&task=view&id=1181

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>