Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New methods and tools needed to measure exposure to airborne nanomaterials

19.04.2007
New methods and tools for measuring exposure to airborne engineered nanomaterials will be required to protect the health of workers in nanotechnology-related jobs— estimated to total 10 million people by 2014—according to two occupational health experts writing in the inaugural issue of the journal Nanotoxicology.

The article, "Assessing Exposure to Airborne Nanomaterials: Current Abilities and Future Requirements," written by Andrew Maynard, chief science advisor at the Wilson Center's Project on Emerging Nanotechnologies, and Robert Aitken, director of strategic consulting at the Institute of Occupational Medicine (Edinburgh, UK), can be viewed online at http://www.nanotoxicology.net.

"Airborne engineered nanomaterials present complex exposure measurement challenges," Maynard said. "Conventional approaches—measuring the mass of airborne material—will not always be sufficient. This presents a challenge because studies have indicated that, on a mass-for-mass basis, certain nanometer-scale particles may be more toxic than larger particles with a similar composition. In other words, smaller particles may be more harmful than conventional thinking would lead us to believe."

Maynard and Aitken reduced the incredibly diverse set of possible engineered nanoparticles into nine distinct categories, ranging from very simple spherical particles to complex multifunctional particles. By pairing these categories with particle properties associated with potential health effects, they teased out possible monitoring approaches for each particle-property combination.

"What our analysis shows is that in the complex new 'nano world' there is no single or simple method for monitoring nanoaerosol exposures in order to assess and manage potential health effects," Aitken explained. "There are instruments that present partial solutions to the measurement challenges we face. But at the end of the day, we lack the tools and devices that are sophisticated, cost-effective and fast enough to do the job."

Maynard and Aitken conclude that current approaches of measuring the number of particles in a volume of air, surface areas, and mass concentration, will all be useful to some degree. However, further research is needed to identify which is most important for specific nanomaterials and which measurement methods are most effective.

The authors advocate developing a new "universal aerosol monitor" capable of providing detailed information on the nature of airborne engineered nanomaterials to which people are exposed. Maynard, Aitken and 12 other experts included development of such a versatile measurement tool among five grand challenges that they viewed as essential to achieving the safe handling of nanotechnology in an article that appeared in the November 16, 2006 issue of the journal Nature.

The proposed wearable sampling device would measure aerosol number, surface area, and concentration mass simultaneously and would be low cost. Today, stand-alone instruments can perform the individual types of measurements called for by Maynard and Aitken. "Bringing these technologies together into a single package within the size and cost parameters discussed does present a significant challenge," they write.

"An economical integrated device will empower small and large nanotechnology industries alike to reduce uncertainty over what their workers are exposed to, and enable them to develop safer working environments" said Maynard. "This will require targeted research into developing new methodologies and new instruments. But the rapid advancement and commercialization of nanotechnologies are leading to the need for effective—if not necessarily perfect—exposure measurement approaches and devices to be developed as soon as possible."

In 2005, nanotechnology was incorporated into $30 billion in manufactured goods—a number predicted to grow to $2.6 trillion in annual manufactured goods by 2014. Already, there are almost 400 manufacturer-identified nanotechnology-based consumer products on the market—ranging from computer chips to automobile parts and from clothing to cosmetics and dietary supplements (see: www.nanotechproject.org/consumerproducts).

Nanotechnology is the ability to measure, see, manipulate and manufacture things usually between 1 and 100 nanometers. A nanometer is one billionth of a meter; a human hair is roughly 100,000 nanometers wide.

Sharon McCarter | EurekAlert!
Further information:
http://www.nanotoxicology.net
http://www.nanotechproject.org/consumerproducts

More articles from Physics and Astronomy:

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>