Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time gives rays a break

07.03.2002


Like a photo, space and time probably look grainy at close quarters.
© GettyImages/NSU


Jumps in space-time might explain the curious survival of energetic particles.

Space and time must be grainy, not smooth. Otherwise high-energy particles produced in astrophysical processes would not be detectable on Earth.

So says Richard Lieu of the University of Alabama in Huntsville. Many agree that jumps in space-time occur on scales that are far too small to measure, but the idea has not yet been proved. Lieu now shows that using this hypothesis can explain how highly energetic particles can travel through space and avoid annihilating collisions1.



Physicists suspect that at distances trillions of times smaller than the width of an atom space is not like a smooth sheet. At this scale, they think it is more like a chessboard, with objects disappearing from one square and reappearing in another.

Ditto time. For durations of about 5x10-44 seconds, events are thought to happen in a series of freeze-frames.

These short intervals of space and time are called the Planck distance and the Planck time. They are named after the German physicist Max Planck who initiated quantum theory, which posited that the energies of atoms and molecules are quantized, or discretely divided.

Atomic quantum theory is firmly established, but the notion that space-time itself is quantized is much harder to test because the Planck time and distance are so small.

Grain bar

Quantization implies that close up, space-time is like a photograph: the apparent smoothness breaks up into grainy patches. Normally we would never notice the grains. Lieu reckons their effects become important at very high energies.

According to Einstein’s general theory of relativity, events involving very fast-moving objects look different to an observer moving at the same speed as the object compared with an observer who is stationary relative to the object. Time seems to move more slowly for the stationary observer. To relate the two frames of reference, one must perform a mathematical adjustment called a Lorentz transformation.

If space-time is grainy, the particles’ positions can’t be pinned down any more accurately than the grain size: there is an unavoidable uncertainty equal to the Planck distance. Similarly, times can’t be specified any more accurately than the Planck time.

Point of view

Lieu shows that at high energies, where relativity has appreciable effects, the Lorentz transformation effectively magnifies these uncertainties. This means that, although they are still tiny in the moving frame of reference, the uncertainties are appreciable to the stationary observer.

So even if particles seem to have enough energy to destroy themselves in collisions with the low-energy microwave photons pervading the Universe, creating showers of new particles in the process, they don’t. From the microwave photons’ point of view, many of the particles aren’t energetic enough to induce such a fate, thanks to space-time graininess.

This might explain why very-high-energy gamma rays have been detected from a distant galaxy-like object called a blazar, suggests Lieu. Astrophysicists expected most of these rays to be wiped out by collisions with intervening microwave photons in space.

The same goes for cosmic rays, the high-energy subatomic particles that stream through space. Predictions say that these should thin out abruptly above a certain energy level because of photon collisions. But no such energy cut-off has been found experimentally, perhaps because of the inflated Planck-scale uncertainties in the particles’ energies.

References

  1. Lieu, R. The effect of Planck scale space time fluctuations on Lorentz invariance at extreme speeds. Astrophysical Journal Letters, in press (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>