Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time gives rays a break

07.03.2002


Like a photo, space and time probably look grainy at close quarters.
© GettyImages/NSU


Jumps in space-time might explain the curious survival of energetic particles.

Space and time must be grainy, not smooth. Otherwise high-energy particles produced in astrophysical processes would not be detectable on Earth.

So says Richard Lieu of the University of Alabama in Huntsville. Many agree that jumps in space-time occur on scales that are far too small to measure, but the idea has not yet been proved. Lieu now shows that using this hypothesis can explain how highly energetic particles can travel through space and avoid annihilating collisions1.



Physicists suspect that at distances trillions of times smaller than the width of an atom space is not like a smooth sheet. At this scale, they think it is more like a chessboard, with objects disappearing from one square and reappearing in another.

Ditto time. For durations of about 5x10-44 seconds, events are thought to happen in a series of freeze-frames.

These short intervals of space and time are called the Planck distance and the Planck time. They are named after the German physicist Max Planck who initiated quantum theory, which posited that the energies of atoms and molecules are quantized, or discretely divided.

Atomic quantum theory is firmly established, but the notion that space-time itself is quantized is much harder to test because the Planck time and distance are so small.

Grain bar

Quantization implies that close up, space-time is like a photograph: the apparent smoothness breaks up into grainy patches. Normally we would never notice the grains. Lieu reckons their effects become important at very high energies.

According to Einstein’s general theory of relativity, events involving very fast-moving objects look different to an observer moving at the same speed as the object compared with an observer who is stationary relative to the object. Time seems to move more slowly for the stationary observer. To relate the two frames of reference, one must perform a mathematical adjustment called a Lorentz transformation.

If space-time is grainy, the particles’ positions can’t be pinned down any more accurately than the grain size: there is an unavoidable uncertainty equal to the Planck distance. Similarly, times can’t be specified any more accurately than the Planck time.

Point of view

Lieu shows that at high energies, where relativity has appreciable effects, the Lorentz transformation effectively magnifies these uncertainties. This means that, although they are still tiny in the moving frame of reference, the uncertainties are appreciable to the stationary observer.

So even if particles seem to have enough energy to destroy themselves in collisions with the low-energy microwave photons pervading the Universe, creating showers of new particles in the process, they don’t. From the microwave photons’ point of view, many of the particles aren’t energetic enough to induce such a fate, thanks to space-time graininess.

This might explain why very-high-energy gamma rays have been detected from a distant galaxy-like object called a blazar, suggests Lieu. Astrophysicists expected most of these rays to be wiped out by collisions with intervening microwave photons in space.

The same goes for cosmic rays, the high-energy subatomic particles that stream through space. Predictions say that these should thin out abruptly above a certain energy level because of photon collisions. But no such energy cut-off has been found experimentally, perhaps because of the inflated Planck-scale uncertainties in the particles’ energies.

References

  1. Lieu, R. The effect of Planck scale space time fluctuations on Lorentz invariance at extreme speeds. Astrophysical Journal Letters, in press (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>