Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time gives rays a break

07.03.2002


Like a photo, space and time probably look grainy at close quarters.
© GettyImages/NSU


Jumps in space-time might explain the curious survival of energetic particles.

Space and time must be grainy, not smooth. Otherwise high-energy particles produced in astrophysical processes would not be detectable on Earth.

So says Richard Lieu of the University of Alabama in Huntsville. Many agree that jumps in space-time occur on scales that are far too small to measure, but the idea has not yet been proved. Lieu now shows that using this hypothesis can explain how highly energetic particles can travel through space and avoid annihilating collisions1.



Physicists suspect that at distances trillions of times smaller than the width of an atom space is not like a smooth sheet. At this scale, they think it is more like a chessboard, with objects disappearing from one square and reappearing in another.

Ditto time. For durations of about 5x10-44 seconds, events are thought to happen in a series of freeze-frames.

These short intervals of space and time are called the Planck distance and the Planck time. They are named after the German physicist Max Planck who initiated quantum theory, which posited that the energies of atoms and molecules are quantized, or discretely divided.

Atomic quantum theory is firmly established, but the notion that space-time itself is quantized is much harder to test because the Planck time and distance are so small.

Grain bar

Quantization implies that close up, space-time is like a photograph: the apparent smoothness breaks up into grainy patches. Normally we would never notice the grains. Lieu reckons their effects become important at very high energies.

According to Einstein’s general theory of relativity, events involving very fast-moving objects look different to an observer moving at the same speed as the object compared with an observer who is stationary relative to the object. Time seems to move more slowly for the stationary observer. To relate the two frames of reference, one must perform a mathematical adjustment called a Lorentz transformation.

If space-time is grainy, the particles’ positions can’t be pinned down any more accurately than the grain size: there is an unavoidable uncertainty equal to the Planck distance. Similarly, times can’t be specified any more accurately than the Planck time.

Point of view

Lieu shows that at high energies, where relativity has appreciable effects, the Lorentz transformation effectively magnifies these uncertainties. This means that, although they are still tiny in the moving frame of reference, the uncertainties are appreciable to the stationary observer.

So even if particles seem to have enough energy to destroy themselves in collisions with the low-energy microwave photons pervading the Universe, creating showers of new particles in the process, they don’t. From the microwave photons’ point of view, many of the particles aren’t energetic enough to induce such a fate, thanks to space-time graininess.

This might explain why very-high-energy gamma rays have been detected from a distant galaxy-like object called a blazar, suggests Lieu. Astrophysicists expected most of these rays to be wiped out by collisions with intervening microwave photons in space.

The same goes for cosmic rays, the high-energy subatomic particles that stream through space. Predictions say that these should thin out abruptly above a certain energy level because of photon collisions. But no such energy cut-off has been found experimentally, perhaps because of the inflated Planck-scale uncertainties in the particles’ energies.

References

  1. Lieu, R. The effect of Planck scale space time fluctuations on Lorentz invariance at extreme speeds. Astrophysical Journal Letters, in press (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>