Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio active brown dwarfs are a new type of pulsar

18.04.2007
A study of brown dwarfs has revealed that these “failed stars” can possess powerful magnetic fields and emit lighthouse beams of radio waves thousands of times brighter than any detected from the Sun. The brown dwarfs are behaving like pulsars, one of the most exotic types of object in our Universe.

Gregg Hallinan of the National University of Ireland, Galway, who is presenting the discovery at the RAS National Astronomy Meeting in Preston on 18th April, said, “Brown dwarfs tend to be seen as a bit boring – the cinders of the galaxy. Our research shows that these objects can be fascinating and dynamic systems, and may be the key to unlocking this long-standing mystery of how pulsars produce radio emissions.”

Since the discovery of pulsars forty years ago, astronomers have been trying to understand how the rotating neutron stars produce their flashing radio signals. Although there have been many attempts to describe how they produce the extremely bright radio emissions, the vast magnetic field strengths of pulsars and the relativistic speeds involved make it extremely difficult to model. Brown dwarfs are now the second class of stellar object observed to produce this kind of powerful, amplified (coherent) radio signal at a persistent level. The emissions from the brown dwarfs appear to be very similar to those observed from pulsars, but the whole system is on a much slower and smaller scale, so it is much easier to decipher exactly what is going on. Importantly, the mechanisms for producing the radio emissions in brown dwarfs are well understood, as they are almost identical to the processes that produce radio emissions from planets.

Hallinan said, “It looks like brown dwarfs are the missing step between the radio emissions we see generated at Jupiter and those we observe from pulsars”.

Jupiter’s volcanic moon, Io, is a source of electrically charged gas that is accelerated by the planet’s magnetic field and causes powerful radio laser, or maser, emissions. The radiation can be so intense that Jupiter frequently outshines the Sun as a source of energy at radio wavelengths. For some time, scientists have thought that there may be similarities between this type of maser emission and pulsars’ lighthouse-like beams of radio waves. Observations of the brown dwarf, TVLM 513, using the Very Large Array (VLA) radio telescope, may provide the first direct evidence for that link.

The group observed the brown dwarf over a period of 10 hours at two different frequencies. In both cases, a bright flash was observed every 1.96 hours.

As yet, the processes controlling the radio flashes from TVLM 513 are still unclear. There is no evidence of a binary system, so interaction of the magnetosphere with a stellar wind from a nearby star seems an unlikely cause, nor is there any sign of an orbiting planet that could produce a scenario like that of Jupiter and Io. However, rapid rotation is also thought to be a source of electron acceleration for a component of Jupiter’s maser emission and this may also be the main source of TVLM 513’s radio flashes.

The group is now planning a large survey of all the known brown dwarfs in the solar neighbourhood to find out how many are radio sources and how many of those are pulsing. If a large fraction of brown dwarfs are found to pulse, it could prove a key method of detection for these elusive objects.

Anita Heward | alfa
Further information:
http://www.nam2007.uclan.ac.uk/info.php
http://astro.nuigalway.ie/research/ultracool-stars.html
http://www.ras.org.uk//index.php?option=com_content&task=view&id=1178

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>