Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shields for the Starship Enterprise: a reality?

18.04.2007
In the last year space agencies in the United States, Europe, China, Japan and India have announced their intention to resume human exploration of the Solar system, beginning with the Moon and perhaps ultimately moving on to Mars.

But travel beyond the immediate vicinity of the Earth carries significant risks for astronauts, not the least of which is the exposure to sometimes high levels of radiation. Now a team of scientists at the Rutherford Appleton Laboratory are set to construct an experimental magnetic shield that would protect explorers in their journeys between the planets. Dr Ruth Bamford will present this idea in her talk on Wednesday 18 April at the Royal Astronomical Society National Astronomy Meeting in Preston.

Cosmic rays and radiation from the Sun itself can cause acute radiation sickness in astronauts and even death. Between 1968 and 1973, the Apollo astronauts going to the moon were only in space for about 10 days at a time and were simply lucky not to have been in space during a major eruption on the sun that would have flooded their spacecraft with deadly radiation. In retrospect Neil Armstrong’s ‘one small step for Man’ would have looked very different if it had.

On the International Space Station there is a special thick-walled room to which the astronauts have had to retreat during times of increased solar radiation. However on longer missions the astronauts cannot live within shielded rooms, since such shielding would add significantly to the mass of the spacecraft, making them much more expensive and difficult to launch. It is also now known that the ‘drip-drip’ of even lower levels of radiation can be as dangerous as acute bursts from the sun.

On the surface of the Earth we are protected from radiation by the thick layers of the atmosphere. And the terrestrial magnetic field extends far into space, acting as a natural ‘force field’ to further protect our planet and deflecting the worst of the energetic particles from the Sun by creating a ‘plasma barrier’.

Now scientists at the Rutherford Appleton Laboratory in Oxfordshire plan to mimic nature. They will build a miniature magnetosphere in a laboratory to see if a deflector shield can be used to protect humans living on space craft and in bases on the Moon or Mars.

In order to work, an artificial mini-magnetosphere on a space craft will need to utilise many cutting edge technologies, such as superconductors and the magnetic confinement techniques used in nuclear fusion.

Thus science is following science fiction once again. The writers of Star Trek realised that any space craft containing humans would need protection from the hazardous effects of cosmic radiation. They envisioned a ‘deflector shield’ spreading out from the Starship Enterprise that the radiation would bounce off. These experiments will help to establish whether this idea could one day become a practical reality.

Robert Massey | alfa
Further information:
http://www.nam2007.uclan.ac.uk/press.php

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>