Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State physicist leads team designing detector for international particle collider

17.04.2007
John Hauptman stood before an international gathering of particle physicists and announced he had another idea.

One that was different. One that was simpler. And best of all, one that he was sure would work.

It was the August 2005 meeting of the physicists working and hoping to create the next huge thing in particle physics, the International Linear Collider. As proposed, the collider would be about 19 miles long and would accelerate electrons and positrons to nearly the speed of light. The particles would collide at the center of the machine at extremely high energies of 500 billion electron volts. The collisions would create new particles for physicists to study. Physicists are hoping those studies will lead to insights into dark matter, supersymmetry, extra dimensions -- in other words, they want to find out what, exactly, the universe is made of and how it works.

Two big detectors would record each of those collisions -- that's 14,000 collisions every second -- and each of the particles they create.

When Hauptman addressed his fellow physicists, three proposals to build the collider's particle detectors were on the table -- the Silicon Detector by a mostly American research team, the Global Large Detector by a mostly Japanese team and the Large Detector Concept by a mostly European team. Big groups of scientists backed by major laboratories had worked for years on designs for detectors capable of producing unprecedented performance and resolution. Those machines would be super sophisticated, cost up to $500 million and contain tens of millions of channels that would have to work together to measure the energy of all those particles. Those ambitious and innovative concepts weren't -- and have not been -- fully demonstrated.

Well, Hauptman stood before the physicists gathered in Snowmass, Colo., and said, "I have another idea."

And he offered up a detector for the linear collider that's now known as the "4th Concept."

"It was bold to walk into this -- which John did -- when it looked like there were three strong groups fighting for two places," said Barry Barish, the director of the International Linear Collider and Linde Professor of Physics Emeritus at the California Institute of Technology in Pasadena.

The response to Hauptman's stepping in with a 10-minute talk and launching a new effort?

"Imagine what it would be like if you were proposing the wheel for the first time," said Alexander Mikhailichenko an accelerator physicist from Cornell University in Ithaca, N.Y., who was at that Snowmass session and is now collaborating on the 4th Concept.

The 4th Concept detector would eliminate the iron surrounding most particle detectors and would be about one-tenth the mass of other detectors.

Hauptman's idea was to design a simpler detector that could compete for one of the two spots at the International Linear Collider. It would be one-third to one-half the cost of the other proposals. And it would feature four subsystems, two of which are considered innovative technologies:

a dual-readout calorimeter that measures the energy of particles and identifies particle types such as muons and, an iron-free muon spectrometer capable of detecting muons, particles sometimes called the "big brother" of the lighter electrons.

Mikhailichenko said the spectrometer's design eliminates 10,000 tons of iron surrounding the detector without sacrificing resolution. And he said the detector's design is modular so new and improved components can easily be switched in and out.

Nural Akchurin, an associate professor of physics at Texas Tech University in Lubbock, helped develop the dual-readout calorimeter. He said the concept has been proven and he has data and results to support it. He expects continued testing will offer more proof.

"To me, this is a purely scientific approach to our experiment," Akchurin said. "There was no money to gain. No money to lose. No fame to gain. We say what we think is right and that's just it."

And the 4th Concept collaborators say their detector is the right one for the job at the International Linear Collider.

"All four subsystems separately achieve the important scientific goal to be two- to 10-times better than the already excellent (Large Electron-Positron) detectors ALEPH, DELPHI, L3 and OPAL," says a summary of the project. "As an integrated detector concept, we achieve comprehensive physics capabilities that put all conceivable physics at the International Linear Collider within reach."

As the idea has advanced, the 4th Concept research team has grown to include 70 members from Iowa State, Cornell, Texas Tech, the Fermi National Accelerator Laboratory in Illinois and the University of New Mexico plus researchers from Italy, France, South Korea, China, Romania, Turkey and Ukraine. The team is working to add $2 million to the $100,000 it has attracted for research and development. The concept is now considered a competitor for a detector spot at the International Linear Collider.

And Hauptman is optimistic about the concept's future.

Because the 4th Concept is fundamentally different that the other proposals, Hauptman said his team's detector would be able to make measurements that are comparable and complementary to the other detector.

"We are the complementary detector," he said.

But any decisions about the International Linear Collider and its detectors are still years away, said Barry Barish of the international collider and Caltech. Researchers are working to develop engineering designs and plans for the collider itself. Any decisions to build the collider will probably happen sometime after 2010.

Barish said the process for selecting two detectors for the collider is just being discussed. Decisions about which detectors to build will could extend beyond the decision to actually build the collider.

And yes, he said the 4th Concept is part of the international collider's detector discussions. The idea sometimes gets left out because it's so much newer than the other proposals. But Barish said there is plenty of time for the concept to catch up to the others.

"The 4th Concept is welcomed and encouraged," Barish said. "In the end, it's my hope and belief that the best ideas are what will be used in these detectors."

John Hauptman | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>