Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Where is the gas in interstellar space?

A team of astronomers led by Professor Martin Barstow of the University of Leicester have searched for the hot gas thought to be present in the interstellar space around the Sun but found it just isn’t there.

Speaking at the Royal Astronomical Society National Astronomy Meeting in Preston on Tuesday 17 April, Professor Barstow will present a map of the local interstellar medium, the gas lying between the stars out to distances of about 300 light years from the Sun, made using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite.

Professor Barstow and his team used FUSE to observe a group of white dwarf stars (compact remnants of stars like our Sun will be at the end of its life). The scientists intended to probe the structure of interstellar space in the vicinity of the Sun by searching for the imprint of oxygen in the ultraviolet light from the stars. However, all the oxygen detected was found to be in the atmospheres of the stars and no interstellar oxygen was found. This implies that, rather than being full of tenuous ionized gas, as expected, this region of interstellar space (the Local Cavity) is actually empty and was probably swept clear by an ancient supernova explosion a few million years ago.

Our present picture of the local interstellar medium is that the Sun and Solar system are embedded in and near the edge of a wispy diffuse cloud, known as the Local Cloud (or Local Fluff). This cloud, which is only 20-30 light years across, is itself in a larger much less dense region called the Local Bubble or Local Cavity.

The gas in the Local Cavity was expected to bear the scars of recent nearby events, such as supernova explosions, and radiation from hot young stars. These would make the cavity gas hot and ionized, with the electrons stripped from the constituent atoms, and should be detected by FUSE. The hot gas should emit also X-rays that are detected as a diffuse background in X-ray telescopes. However, if there is no hot gas present, then we need to find another explanation for this X-ray background. One novel suggestion is that it arises from the exchange of charged particles at the boundary between the Sun’s magnetic field and interstellar space.

Robert Massey | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>