Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble space telescope reveals the aftermath of “Star Wars”

17.04.2007
An Anglo-American team of astronomers have used the Advanced Camera for Surveys on the Hubble Space Telescope (HST) to obtain the first direct optical images of the aftermath of a recent titanic explosion that took place in a star system 5,000 light years from Earth.

In a talk on Tuesday 17 April at the Royal Astronomical Society National Astronomy Meeting in Preston, Professor Michael Bode of Liverpool John Moores University will describe how these unique observations shed new light on the circumstances of such events.

Professor Bode will be speaking on behalf of the team which also comprises Dan Harman and Matt Darnley (Liverpool JMU, UK), Tim O’Brien (Jodrell Bank Observatory, University of Manchester, UK), Howard Bond (Space Telescope Science Institute, USA), Sumner Starrfield (Arizona State University, USA), Nye Evans (University of Keele, UK), Stewart Eyres (University of Central Lancashire, UK) and Michael Shara (American Museum of Natural History, USA).

During the night of 12 February 2006, Japanese amateur astronomers reported that a star in the constellation of Ophiuchus (known as RS Oph for short) had suddenly brightened and become visible even with the unaided eye in the night sky. Although this was the latest in a series of such outbursts of this star that have been spotted over the last hundred years or so, it was the first one since 1985 and gave scientists an opportunity to study it with new, more powerful, telescopes on the ground and in space.

RS Oph consists of a white dwarf, a super-dense dead star about the size of the Earth which was once the core of a star like the Sun and whose outer layers have been lost into space, in close orbit with a much larger, so-called red giant star. The two stars are so close together that the strong gravitational field of the white dwarf continuously pulls hydrogen-rich gas from the outer layers of the red giant. After around 20 years, so much gas builds up that a runaway thermonuclear explosion occurs on the white dwarf's surface. In less than a day, its energy output increases to over 100,000 times that of the Sun, and a quantity of gas equivalent to the mass of the Earth is ejected into space at speeds of several thousand kilometres per second (several million miles per hour).

Explosions such as this on short timescales of decades can only be explained if the white dwarf is near the maximum mass it could have without having collapsed to become an even denser object - a neutron star – during a supernova explosion.

What is also very unusual in RS Oph is that the red giant is losing enormous amounts of gas in a wind that envelops the whole system. As a result, the explosion on the white dwarf occurs effectively “inside” its companion's atmosphere and the ejected gas then slams into it at very high speed. Professor Bode explains “Immediately after the explosion, an observing campaign was set in train that involved most of the major space observatories, and many on the ground. We expected to see emission from the blast waves set up as the ejecta from the white dwarf impacted the red giant wind and we were not disappointed! For example, X-ray observations revealed temperatures in the shocked gas of over 100,000,000 degrees Celsius (around ten times that in the core of the Sun).”

On the ground, radio observations from telescopes spread around the globe also allowed the team to probe the initial stages of the outburst. Professor Bode comments, “Our first observations, made only two weeks after the explosion was reported, showed an expanding blast wave already comparable in size to Saturn’s orbit around the Sun. Over the next few months we were surprised to find our radio observations apparently showing it turning from a ring into a cigar-like shape with two more extended blobs (“jets”) gradually emerging, one on either side.”

In order to determine more precisely what was happening, optical observations with the orbiting Hubble Space Telescope (HST) were made in July 2006. Dr Dan Harman of Liverpool JMU took on the task of analysing the resulting data. “The problem here was that, seen from a distance of 5,000 light years, we were looking for what would appear to be very tiny and very faint features buried within the glare from the bright central star – a bit like trying to read the registration (licence) plate of an approaching car with its headlights on at night. However, after carefully removing the confusing effects of the star we were astounded by the results”.

Professor Bode continues, “Archival images taken before the latest outburst show no extended structure, but our latest HST images clearly show what appear to be two overlapping rings of total extent around 0.4 seconds of arc in size. At a distance of 5,000 light years, that equates to 8 times the diameter of Pluto’s orbit around our Sun and an inferred speed of expansion from the time of the explosion of around 3,200 kilometres per second (over 7 million miles per hour). The overall size and orientation are consistent with continued expansion of the largest structures (so-called “jets”) seen in the later radio images, but the picture is, perhaps unsurprisingly, not the simple one that had been assumed prior to the 2006 outburst.”

What Mike Bode and the team think we may be seeing is emission from the boundary of a rapidly expanding region shaped something like a peanut, but inclined towards us at an angle of around 40 degrees. The central stars orbit around each other in the plane of the “waist” region and the rings we see are a natural consequence of us looking through this inclined structure. They are now working with astronomers in Mexico who have high resolution optical spectra taken from the ground at around the time of the HST observations, and with these they expect to be able to tie down the geometry more precisely. “Further scheduled HST observations should also help in this regard”, says Bode. As Professor Sumner Starrfield adds, “The HST images clearly resolve the effects of high velocity material that has been explosively ejected from the white dwarf and then impacting the environment of the companion star: Star Wars in Action.”

The big question is what causes this shaping in the first place? It is thought unlikely that it originates in the explosion itself. More probable is that the environment into which the material is ejected is denser in some directions (most likely the plane of the binary star orbit) than others. This will have important wider implications for our understanding of the explosion and how jet-like structures are formed in many other astronomical objects.

CONTACTS

Prof Michael F. Bode
Astrophysics Research Institute, Liverpool John Moores University
Tel: +44 (0)151 231 2920 (direct), 2919(secretary)
Mob: +44 (0)796 842 2360
E-mail: mfb@astro.livjm.ac.uk
Dr Daniel Harman
Astrophysics Research Institute, Liverpool John Moores University
United Kingdom
Tel: +44 (0)151 231 2906 (direct), 2919 (secretary)
E-mail: dh@astro.livjm.ac.uk
Dr Stewart Eyres
Centre for Astrophysics
University of Central Lancashire
Tel: +44 (0)1772 893 742
E-mail: spseyres@uclan.ac.uk
Dr Tim O'Brien
Jodrell Bank Observatory
University of Manchester
Tel: +44 (0)1477 571321
E-mail: tob@jb.man.ac.uk
Prof Sumner Starrfield
School of Earth and Space Exploration
Arizona State University
Tel: +1 480 965 7569
E-mail: sumner.starrfield@asu.edu

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://www.nam2007.uclan.ac.uk/press.php

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>