Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the invisible: dark matter charted out to five billion light years

17.04.2007
Most of the matter in the Universe is not the ordinary kind made up of protons, neutrons, and electrons, but an elusive "dark matter" detectable only from its gravity.

Like a tenuous gas, dark matter is all around us - it goes through us all the time without us noticing - but tends to collect in large quantities around galaxies and clusters of galaxies and makes up about one-sixth of the mass of the Universe.

In his talk on Tuesday 17 April at the Royal Astronomical Society National Astronomy Meeting in Preston, Dr Ignacio Ferreras of King’s College London will present the maps of the distribution of "ordinary" and dark matter in nine galaxies out to a distance of five billion light-years from the Sun.

Dr Ferreras worked with Dr Prasenjit Saha (University of Zurich, Switzerland) and Professor Scott Burles (Massachusetts Institute of Technology, USA) to take advantage of a rare astronomical phenomenon known as 'gravitational lensing'. The galaxies they studied serendipitously lie in front of quasars, which are bright sources of light at even greater distances. The gravity of the nearer galaxy and dark matter distorts the quasar light, causing the quasar to be seen as two or four images. The placement of these mirage images, studied using new theoretical techniques in gravitational lensing, makes it possible to measure the total mass and effectively gives scientists a telescope for dark matter!

By analysing the starlight from the galaxies using stellar evolution theory, it is possible to measure the mass of the stars they contain. Combining these ideas with archival data from the Hubble Space Telescope, Dr Ferreras and his colleagues were able to make dark-matter maps.

Current theories of galaxy formation can explain some but not all of these new findings. After the Big Bang, gas should have fallen towards the centres of dark-matter halos, there igniting to form the stars that go on to make up a galaxy. But why is there a higher proportion of dark matter in more massive galaxies? And had these galaxies already finished forming five billion years ago? These questions will only be answered by future theories of galaxy formation.

CONTACT(s):

Dr Ignacio Ferreras
King’s College
University of London
Tel: +44 (0) 20 7848 2150
E-mail: ferreras@star.ucl.ac.uk

Robert Massey | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>