Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Did William Herschel Discover The Rings Of Uranus In The 18th Century?

In a paper presented at the National Astronomy Meeting in Preston from 16 – 20 April, Dr Stuart Eves of Surrey Satellite Technology Limited will challenge the orthodox view that the rings around the planet Uranus were first detected during an occultation experiment in 1977.

Remarkably, a paper presented to the Royal Society in December 1797 by the then King's Astronomer, Sir William Herschel, (who had discovered Uranus in 1781), includes a description of a possible ring around the planet. Dr Eves believes this is the first observation of the rings that were not seen again for almost two hundred years.

Even Herschel was unable to confirm his possible sightings, and they were not repeated by several generations of astronomers who came after him. (Prior to 1977, when astronomers thought that Uranus lacked rings, Herschel’s claims were dismissed as “clearly erroneous”. And even after 1977, when the existence of the rings was finally established, it was suggested that the rings were far too dim to have been detected by Herschel’s telescopes, and so his claim to priority was ignored).

However, a recent re-evaluation of Herschel’s 1797 paper by Dr Stuart Eves of Surrey Satellite Technology Limited, suggests that Herschel’s claim to have seen one of the rings may well have been correct.

“Herschel got a lot of things right”, notes Dr Eves, “He has a ring of roughly the correct size relative to the planet, and he also has the orientation of this ring in the right direction. In addition, he accurately describes the way the appearance of the ring changes as Uranus moves around the Sun, and he even gets its colour right. Uranus’s Epsilon ring is somewhat red in colour, a fact only recently confirmed by the Keck telescope, and Herschel mentions this in his paper.”

But if Herschel could see the Epsilon ring in the late 1700’s, why did no-one else follow up his observations in subsequent years as the telescopes astronomers used improved? “There are several mechanisms that could account for this”, suggests Dr Eves, “The current Cassini satellite mission to Saturn is telling us that its rings are becoming darker and also expanding, (becoming more diffuse), over time. If these same mechanisms are also operating at Uranus, then the appearance of its rings could have changed quite markedly over 200 years, making them much harder to detect.” Herschel’s observations could thus be proof that planetary ring systems in our solar system are far more dynamic than has previously been supposed.

Robert Massey | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>