Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s strongest magnet for neutron experiments to be installed in Berlin

13.04.2007
A collaboration contract between the Hahn-Meitner-Institute Berlin (HMI) and the National High Magnetic Field Laboratory (NHMFL) at Florida State University, Tallahassee has been signed

The new high field magnet, which is planned to be completed at the Hahn-Meitner-Institute Berlin (HMI) by 2011, will generate a magnetic field between 25 tesla and 30 tesla, more than half a million times stronger than the earth’s magnetic field. The National High Magnetic Field Laboratory (NHMFL), Tallahassee will build the magnet system for $8.7 million. The required infrastructure to run the magnet, including cooling facilities and power supplies will cost more than $14 million. In total, Euros 17.8 million will be financed for the entire project, primarily by the German Federal Ministry of Education and Research (BMBF).

It allows to strengthen the HMI’s leading international position with regard to experiments combining neutron research and strong magnetic fields and low temperatures. “Scientists from all over the world already come to us because we can support them explore materials by neutron scattering under extreme external conditions. With the new magnet at HMI scientists will accomplish what is not possible up to now anywhere in the world,” said Professor Michael Steiner, the scientific director of the HMI, in Berlin. Thomas Rachel, state secretary from the German BMBF, also said: “With this powerful new magnet system, the Hahn-Meitner Institute itself becomes a magnet, pulling in researchers from around the world.”

Researchers expect experiments with the magnet to yield new insight in the fields of physics, chemistry, biology, and materials science, for example experiments can contribute to the fundamental understanding of high temperature superconductivity - the ability of individual substances to conduct electric current without resistance at higher temperatures.

In order to build the magnet, the engineers at NHMFL must go to the limits of what is technically feasible. The inner part of the hybrid magnet system, the place of the highest fields, will be made up of a copper coil. The outer coil, connected in series with the resistive inner coil, will be consisting of superconducting material cooled with liquid Helium. With the aforementioned hybrid construction, the extreme fields can be produced while consuming the lowest energy input possible.

Furthermore, neutron instrumentation especially for use with a high field magnet had to be developed. This know-how is available at the HMI- another important reason why the German Helmholtz Association is supporting this project. Professor Juergen Mlynek, president of the Helmholtz Association, said in Berlin: “The Hahn-Meitner-Institute has a lot of experience in running strong magnets and in developing neutron instrumentation. On the basis of this unique expertise, HMI will lead this ambitious project to success.”

Dr. Peter Smeibidl | alfa
Further information:
http://www.hmi.de/pr/pressemitteilungen/2007/hfm/HFM_Broschuere.pdf

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>