Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s strongest magnet for neutron experiments to be installed in Berlin

13.04.2007
A collaboration contract between the Hahn-Meitner-Institute Berlin (HMI) and the National High Magnetic Field Laboratory (NHMFL) at Florida State University, Tallahassee has been signed

The new high field magnet, which is planned to be completed at the Hahn-Meitner-Institute Berlin (HMI) by 2011, will generate a magnetic field between 25 tesla and 30 tesla, more than half a million times stronger than the earth’s magnetic field. The National High Magnetic Field Laboratory (NHMFL), Tallahassee will build the magnet system for $8.7 million. The required infrastructure to run the magnet, including cooling facilities and power supplies will cost more than $14 million. In total, Euros 17.8 million will be financed for the entire project, primarily by the German Federal Ministry of Education and Research (BMBF).

It allows to strengthen the HMI’s leading international position with regard to experiments combining neutron research and strong magnetic fields and low temperatures. “Scientists from all over the world already come to us because we can support them explore materials by neutron scattering under extreme external conditions. With the new magnet at HMI scientists will accomplish what is not possible up to now anywhere in the world,” said Professor Michael Steiner, the scientific director of the HMI, in Berlin. Thomas Rachel, state secretary from the German BMBF, also said: “With this powerful new magnet system, the Hahn-Meitner Institute itself becomes a magnet, pulling in researchers from around the world.”

Researchers expect experiments with the magnet to yield new insight in the fields of physics, chemistry, biology, and materials science, for example experiments can contribute to the fundamental understanding of high temperature superconductivity - the ability of individual substances to conduct electric current without resistance at higher temperatures.

In order to build the magnet, the engineers at NHMFL must go to the limits of what is technically feasible. The inner part of the hybrid magnet system, the place of the highest fields, will be made up of a copper coil. The outer coil, connected in series with the resistive inner coil, will be consisting of superconducting material cooled with liquid Helium. With the aforementioned hybrid construction, the extreme fields can be produced while consuming the lowest energy input possible.

Furthermore, neutron instrumentation especially for use with a high field magnet had to be developed. This know-how is available at the HMI- another important reason why the German Helmholtz Association is supporting this project. Professor Juergen Mlynek, president of the Helmholtz Association, said in Berlin: “The Hahn-Meitner-Institute has a lot of experience in running strong magnets and in developing neutron instrumentation. On the basis of this unique expertise, HMI will lead this ambitious project to success.”

Dr. Peter Smeibidl | alfa
Further information:
http://www.hmi.de/pr/pressemitteilungen/2007/hfm/HFM_Broschuere.pdf

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>