Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feather-light touch all that's needed for Darwin's frictionless optics

13.04.2007
ESA's Darwin mission will look for extrasolar planets and signs of life. The Agency's Technology Research Programme has sponsored the development of critical optical components whose frictionless mechanism can respond to the touch of a feather.

ESA's Darwin mission aims to discover extrasolar planets and examine their atmospheres for signs of life, particularly for the presence of certain life-related chemicals such as oxygen and carbon dioxide. The major technical challenge lies in distinguishing, or resolving, the light from an extrasolar planet from the hugely overwhelming radiation emitted by the planet's nearby star.

The multi-satellite Darwin mission will use optical interferometry in which at least three separate orbiting telescopes jointly operate as an equivalent single telescope with a much larger effective aperture, thus achieving the required resolution. With this method, multiple smaller telescopes having actual apertures of, for example, 3 metres, can combine to provide an effective aperture of several tens to hundreds of metres, depending on the distance between the individual telescopes.

Creating delicate phase delays

Darwin will use nulling interferometry, a specific interferometric technique used to shield the overwhelming star emissions by precisely delaying the radiation coming from some of the telescopes by a small amount. This, in combination with achromatic - or colour independent - phase shifters, will cancel out the bright star radiation while allowing the much fainter extrasolar planet light to be detected.

A component known as an Optical Delay Line (ODL) is at the core of such interferometric observations. An ODL is a sophisticated opto-mechanical device that can introduce well-defined variations, or delays, in the optical path of a light beam and includes a moving mirror positioned with extremely good accuracy.

Precise movement using magnetic levitation

To demonstrate the critical technology required by Darwin, ESA's Technology Research Programme has sponsored the design and testing of an ODL that uses magnetic levitation for precise, frictionless mirror movement. The ODL's wonderfully sophisticated guidance and translation mechanism is, thanks to the magnetic levitation, completely contactless and frictionless and can be easily displaced by the faint touch of a feather (see video clip accompanying article).

The optical delay introduced by the ODL must be capable of adjusting the optical path length of collected light beams with an accuracy of a few nanometers; 1 nanometre corresponds to a millionth of a millimetre.

Under ESA sponsorship, the ODL was built by an industrial consortium led by TNO Science and Industry, part of The Netherlands' Organisation for Applied Scientific Research, and including SRON and Dutch Space in the Netherlands, Belgium's Micromega-Dynamics s.a. and the Centre Spatial de Liège, and France's Alcatel Alenia Space and Sageis CSO. The ODL magnetic suspension technology was pre-developed by Micromega-Dynamics under the ESA-funded MABE (Magnetic Bearing) research study, which included quasi-zero gravity testing during parabolic flights.

Sub-nanometre resolution to be incorporated in future flight mechanism

The ODL shown here successfully demonstrated sub-nanometre resolution and stability; the design, materials and manufacturing processes for this ODL are representative of a future flight-capable mechanism.

The ODL has also been thoroughly tested in Darwin's demanding cryogenic environment, at 40 Kelvin - or about -233 Celsius.

Darwin's ODLs are uniquely engineered to operate at cryogenic temperatures to avoid self-interference from the satellites' own thermal radiation. This is mandatory as Darwin will conduct observations at mid-infrared wavelengths, where the planet-to-starlight brightness ratio is relaxed compared to that in visible wavelengths, and where life-related marker chemicals such as water, ozone and carbon dioxide can be detected.

The ODLs will be used in Darwin for co-phasing the light collected by the separate telescopes within a central hub spacecraft, which is responsible for the correct recombination of the light beams and hence achieving the high-performance resolution of a single very large telescope.

Malcom Fridlund | alfa
Further information:
http://www.esa.int/techresources/ESTEC-Article-fullArticle_par-28_1176186226737.html

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>