Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new study of living cells could revolutionise the way we test drugs

12.04.2007
Researchers have made a breakthrough by detecting the electrical equivalent of a living cell’s last gasp. The work takes them a step closer to both seeing the ‘heartbeat’ of a living cell and a new way to test drugs.

To stay alive, individual biological cells must transfer electrically charged particles, called ions across their cell membranes. This flow produces an electrical current that could, in principle, be detected with sensitive enough equipment. The recognition of such electrical activity would provide a kind of ‘cellular cardiogram’, allowing the daily functioning of the cell to be monitored in a similar way to a cardiograph showing the workings of a human heart.

With funding from the Engineering and Physical Sciences Research Council (EPSRC), Professor Andre Geim at the University of Manchester and his team have set out to make the first measurement of a cellular ‘heartbeat’.

“Once we know the average or usual pattern of electrical activity in a cell, we can see how different drugs affect it,” says Professor Geim. This would put an early safeguard into the system that could be applied long before the drug was tested on animals or even humans. In addition, the electrical activity test could be used to monitor the effects of pollution on naturally occurring micro-organisms in the environment.

To detect a cell’s normal activity, Andre Geim and fellow researchers modified apparatus used originally to detect weak magnetic fields in superconductors*. Unfortunately, these modifications reduced the sensitivity of the technique, and the normal activity of the yeast cell could not be detected. This is the first time such a technique has been used on a living cell.

Not to be defeated, the researchers went about livening things up. They chose to invoke what any self-respecting party-goer would: alcohol. “We added ethanol – which is essentially vodka – to provoke a response from the cell. Ethanol is known to increase the transparency of cellular membranes which we hoped would give a signal we could detect,” says Dr Irina Barbolina, who carried out the experiments.

It worked. As soon as the yeast got a taste of the vodka, the probe registered an electrical signal. A drunken hiccup perhaps? “It was probably the last gasp of the dying cell,” says Professor Geim. The researchers had added so much ethanol that it poisoned the cell.

Although not the cardiogram they had hoped for, the electrical signal was the smallest yet detected from a living cell, around 100 times smaller than anything previously detected. It added up to an electrical current of just 10 moving electrons. It has given the team confidence that equipment sensitive enough to measure a cell’s heartbeat can be developed.

“We already have some ideas about how to improve the sensitivity of the detector in water and next time we will also use a more active micro-organism such as an amoeba. Yeast is a subdued organism and doesn’t generate much activity,” says Professor Geim. “Probably, the most important outcome is that we defined an important goal. Cellular cardiograms can no longer be seen as absurd or science-fictional. If not us then someone else will soon develop a technique sensitive enough for such studies.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>