Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new study of living cells could revolutionise the way we test drugs

12.04.2007
Researchers have made a breakthrough by detecting the electrical equivalent of a living cell’s last gasp. The work takes them a step closer to both seeing the ‘heartbeat’ of a living cell and a new way to test drugs.

To stay alive, individual biological cells must transfer electrically charged particles, called ions across their cell membranes. This flow produces an electrical current that could, in principle, be detected with sensitive enough equipment. The recognition of such electrical activity would provide a kind of ‘cellular cardiogram’, allowing the daily functioning of the cell to be monitored in a similar way to a cardiograph showing the workings of a human heart.

With funding from the Engineering and Physical Sciences Research Council (EPSRC), Professor Andre Geim at the University of Manchester and his team have set out to make the first measurement of a cellular ‘heartbeat’.

“Once we know the average or usual pattern of electrical activity in a cell, we can see how different drugs affect it,” says Professor Geim. This would put an early safeguard into the system that could be applied long before the drug was tested on animals or even humans. In addition, the electrical activity test could be used to monitor the effects of pollution on naturally occurring micro-organisms in the environment.

To detect a cell’s normal activity, Andre Geim and fellow researchers modified apparatus used originally to detect weak magnetic fields in superconductors*. Unfortunately, these modifications reduced the sensitivity of the technique, and the normal activity of the yeast cell could not be detected. This is the first time such a technique has been used on a living cell.

Not to be defeated, the researchers went about livening things up. They chose to invoke what any self-respecting party-goer would: alcohol. “We added ethanol – which is essentially vodka – to provoke a response from the cell. Ethanol is known to increase the transparency of cellular membranes which we hoped would give a signal we could detect,” says Dr Irina Barbolina, who carried out the experiments.

It worked. As soon as the yeast got a taste of the vodka, the probe registered an electrical signal. A drunken hiccup perhaps? “It was probably the last gasp of the dying cell,” says Professor Geim. The researchers had added so much ethanol that it poisoned the cell.

Although not the cardiogram they had hoped for, the electrical signal was the smallest yet detected from a living cell, around 100 times smaller than anything previously detected. It added up to an electrical current of just 10 moving electrons. It has given the team confidence that equipment sensitive enough to measure a cell’s heartbeat can be developed.

“We already have some ideas about how to improve the sensitivity of the detector in water and next time we will also use a more active micro-organism such as an amoeba. Yeast is a subdued organism and doesn’t generate much activity,” says Professor Geim. “Probably, the most important outcome is that we defined an important goal. Cellular cardiograms can no longer be seen as absurd or science-fictional. If not us then someone else will soon develop a technique sensitive enough for such studies.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>