Precise and low-cost submicron fabrication technique for manufacturing human spare parts

The new process is based on the use of visible light, ultra short pulse laser. When focused inside photopolymerizable material the radiation causes a reaction, where two photons are absorbed simultaneously, thus leading to the polymerization of the material. One of the advantages of this so called two-photon polymerization process is that the fabrication occurs below the surface of liquid material, and the polymerization is confined only to the point of focus whose diameter can be much less than 1 micrometer. The conventional ultraviolet light induced polymerization causes hardening of the material along the entire path of the UV-beam, thus making it impossible to form very small three dimensional features. The two photon polymerization process requires no utilization of special photolithographic masks since the structure is formed directly inside the liquid volume.

High accuracy biomaterial structures need to be used as tissue engineering scaffolds or cell culture platforms where the fine features have to follow the dimensions of the cultured cells. So far the smallest features achieved in this project have been about 700 nanometers wide. As a reference one can compare it to the epithelial cells, which have a diameter of 11000 – 12000 nm or viruses that range in size between 10 – 100 nm. The fabricated structures can be made of biodegradable materials and thus are biocompatible. The process can also be utilized in manufacturing structures for other applications, e.g. optical waveguides, photonic crystals, and microfluidic channels.

Another advantage of this process is the possibility to utilize an inexpensive, low-power laser. Other research groups have typically used very expensive femtosecond titanium-sapphire pulse lasers. A much cheaper laser that produces longer, picoseconds width pulses has been used in the project. As far as is known there is only one research group in the USA, that has previously succeeded in polymerizing biomaterials with a similar system.

The project has been accomplished as an interdisciplinary collaboration. Research Scientist Sanna Peltola from the Institute of Biomaterials, Tampere University of Technology has been responsible of the development of materials, and the research group of Research Professor Jouko Viitanen from VTT has developed the laser system. The stem cell culturing requirements have been specified by the researchers of the Tampere University. Nanofoot Finland Oy is commercializing the new process. The company offers versatile services in the area of laser machining.

Media Contact

Press Office alfa

More Information:

http://www.vtt.fi/?lang=en

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Security vulnerability in browser interface

… allows computer access via graphics card. Researchers at Graz University of Technology were successful with three different side-channel attacks on graphics cards via the WebGPU browser interface. The attacks…

A closer look at mechanochemistry

Ferdi Schüth and his team at the Max Planck Institut für Kohlenforschung in Mülheim/Germany have been studying the phenomena of mechanochemistry for several years. But what actually happens at the…

Severe Vulnerabilities Discovered in Software to Protect Internet Routing

A research team from the National Research Center for Applied Cybersecurity ATHENE led by Prof. Dr. Haya Schulmann has uncovered 18 vulnerabilities in crucial software components of Resource Public Key…

Partners & Sponsors