Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise and low-cost submicron fabrication technique for manufacturing human spare parts

12.04.2007
VTT Technical Research Centre of Finland, Tampere University of Technology and Nanofoot Finland Oy have developed a direct-write three-dimensional forming method of biomaterials. The methodology enables fabrication of nano and micrometer scale structures that can be used as parts of tissue engineering scaffolds. The project is funded by the BioneXt Tampere Research Programme.

The new process is based on the use of visible light, ultra short pulse laser. When focused inside photopolymerizable material the radiation causes a reaction, where two photons are absorbed simultaneously, thus leading to the polymerization of the material. One of the advantages of this so called two-photon polymerization process is that the fabrication occurs below the surface of liquid material, and the polymerization is confined only to the point of focus whose diameter can be much less than 1 micrometer. The conventional ultraviolet light induced polymerization causes hardening of the material along the entire path of the UV-beam, thus making it impossible to form very small three dimensional features. The two photon polymerization process requires no utilization of special photolithographic masks since the structure is formed directly inside the liquid volume.

High accuracy biomaterial structures need to be used as tissue engineering scaffolds or cell culture platforms where the fine features have to follow the dimensions of the cultured cells. So far the smallest features achieved in this project have been about 700 nanometers wide. As a reference one can compare it to the epithelial cells, which have a diameter of 11000 - 12000 nm or viruses that range in size between 10 - 100 nm. The fabricated structures can be made of biodegradable materials and thus are biocompatible. The process can also be utilized in manufacturing structures for other applications, e.g. optical waveguides, photonic crystals, and microfluidic channels.

Another advantage of this process is the possibility to utilize an inexpensive, low-power laser. Other research groups have typically used very expensive femtosecond titanium-sapphire pulse lasers. A much cheaper laser that produces longer, picoseconds width pulses has been used in the project. As far as is known there is only one research group in the USA, that has previously succeeded in polymerizing biomaterials with a similar system.

The project has been accomplished as an interdisciplinary collaboration. Research Scientist Sanna Peltola from the Institute of Biomaterials, Tampere University of Technology has been responsible of the development of materials, and the research group of Research Professor Jouko Viitanen from VTT has developed the laser system. The stem cell culturing requirements have been specified by the researchers of the Tampere University. Nanofoot Finland Oy is commercializing the new process. The company offers versatile services in the area of laser machining.

Press Office | alfa
Further information:
http://www.vtt.fi/?lang=en

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>