Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One-way street planned for heat

05.03.2002


Physicists design material that conducts one way and insulates the other.


Stiffness and springiness could make heat stop and go.
© GettyImages



European physicists have sketched out a blueprint for a valve that lets heat pass only one way. The proposed material conducts heat flowing in one direction, but also behaves as an insulator, stopping it going the other way1.

In theory, a heat valve could keep parts of microelectronic circuitry cool or channel heat to chip-sized chemical reactors, which are currently being developed for high-efficiency chemical synthesis or ultra-sensitive analysis.


Marcello Terraneo of Insubria University in Como, Italy, and colleagues suggest that the valve material would be a one-dimensional solid: a chain of linked particles such as atoms. The chain would be designed to shake in different ways, depending on which end it is vibrated from.

Strung together in the right way, some biological molecules, such as DNA strands, might have the required properties, the researchers speculate. Living cells may even control the flow of heat energy this way already.

Good vibrations

Heat corresponds to the movement of atoms. When atoms are joined together in molecules, they vibrate back and forth. The larger the vibrations, the hotter the material.

Heat is conducted along a chain of particles because vibrations travel from one particle to the next. If one end is attached to a hot material and the other to something cooler, the hot end jiggles more. This jiggling goes down the chain to the cool end.

A chain of particles of identical weights linked by ideal, so-called ’harmonic’ springs vibrates at the same frequency irrespective of the amplitude of the vibrations. In real chains, like DNA, the links are not ideal, but anharmonic: their vibration frequency depends on amplitude.

One-way heat transfer would make use of anharmonicity. A chain divided into three sections, say Terraneo’s team, can insulate heat if the middle section acts like a strongly anharmonic spring while the outer two are softer and more harmonic.

If one of the end sections is stiffer than the other, more heat can flow in one direction than the other. The anharmonic middle of the chain can jiggle in sympathy with the stiff end when it is cold and the soft end when it is hot - but not vice versa. So the chain transmits heat from a hot, soft end to a cool stiff end. If the stiff end gets hot and the soft cold, the middle section blocks vibrations, so the chain as a whole acts as an insulator.

References

  1. Terraneo, M., Peyrard,, M. & Casati, G. Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Physical Review Letters, 88, 094302, (2002).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>