Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers move closer to switching nuclear isomer decay on and off

10.04.2007
Livermore researchers have moved one step closer to being able to turn on and off the decay of a nuclear isomer.

The protons and neutrons in a nucleus can be arranged in many ways. The arrangement with the lowest energy is called the ground state and all others are called excited states. (This is analogous to the ground and excited states of electrons in an atom except that nuclear excited states are typically thousands of times higher in energy.) Excited nuclear states eventually decay to the ground state via gamma emission or to another nucleus via particle emission. Most excited states are short-lived (e.g., billionth of a second). However, a few are long-lived (e.g., hours) and are called isomers.

Turning the decay on and off is key to using isiomers as high-energy density storage systems such as batteries.

Researchers at Livermore studied an isomer of Thorium-229. This isomer is unique in that its excitation energy is near optical energies, implying that one day scientists may be able to transition Th229 nuclei between the ground and isomeric states using a table-top laser.

"This would then be the first time human control would be exerted over nuclear levels," said Peter Beiersdorfer, an LLNL physicist and co-author of a paper that appears in the April 6 issue of Physical Review Letters. "This only works if the laser is tuned to exactly the correct energy."

For years, researchers have been fascinated with this isomer because it could lead to new science and technology breakthroughs. Among them are: a quantum many-body study; a clock with unparallel precision for general relativity tests; a superb qubit (a quantum bit) for quantum computing; testing the effects of the chemical environment on nuclear decay rates. Isomers also may serve as a battery for storing large amounts of energy.

However, before these exotic studies can be performed, an accurate determination of the isomer’s excitation energy above the ground state is needed. In the most recent research, Livermore scientists, along with colleagues from Los Alamos National Laboratory and NASA Goddard Space Flight Center, have made the most accurate measurement of this energy difference using an indirect technique.

"Our measurement is more accurate and differs significantly from prior results. This may explain why scientists have failed to directly see this transition. Frankly, they were looking in the wrong place," said Bret Beck, an LLNL physicist and lead-author on the paper.

The next step will be to use a laser or a synchrotron tuned to the exact energy of the spacing between the two levels and observe the transition from the ground state to the isomeric state.

Once laser excitation has proven possible, helping an excited level decay (and thus give off energy) can be tackled. "But for building a more precise clock than we have today, or building a quantum computer, excitation may be all that’s needed," Beiersdofer said.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>