Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray satellites catch magnetar in gigantic stellar ‘hiccup’

10.04.2007
Astronomers using data from several X-ray satellites have caught a magnetar – the remnant of a massive star with an incredibly strong magnetic field – in a sort of giant cosmic blench.

When it comes to eerie astrophysical effects, the neutron stars commonly known as magnetars are hard to beat. The massive remnants of exploded stars, magnetars are the size of mountains but weigh as much as the sun, and have magnetic fields hundreds of trillions of times more powerful than the Earth’s, which pushes our compass needles north.


Located in a star cluster about 15 000 light-years away in the Ara constellation in the southern hemisphere, the magnetar goes by the unwieldy official name CXOU J164710.2-455216. These images were taken by the European Photon Imaging Camera (EPIC), on board ESA’s XMM-Newton satellite, using 0.3-12.0 keV photons. The left panel shows the image of the field before the burst. The magnetar is brighter in the right panel, taken after the burst. A seismic event was observed on this object on September 2005 while it was being heavily observed with several satellites, including ESA’s X-ray satellite, XMM-Newton, and NASA's Swift X-ray and gamma-ray observatory. The event caused the surface of the dense star to crack and shine brightly from multiple sources. Credits: ESA/XMM-Newton/ California Institute of Technology, M.Muno

Now astrophysicists have managed to catch a recently discovered magnetar in a sort of giant cosmic hiccup that still has them puzzled. In multiple reports in the Astrophysical Journal and Monthly Notices of the Royal Astronomical Society, the researchers describe the behaviour of this body, located in a star cluster about 15 000 light-years away in the Ara constellation in the southern hemisphere. The magnetar goes by the unwieldy official name CXOU J164710.2-455216, or more informally, the ‘Westerlund 1 magnetar.’

"We only know of about a dozen magnetars," says Michael Muno, a scientist at the California Institute of Technology's Space Radiation Laboratory, and the original discoverer of the magnetar in 2005. "In brief, what we observed was a seismic event on the magnetar, which tells us a lot about the stresses these objects endure."

In September 2005, about a year after Muno found the magnetar, the object produced a burst that luckily came at a time when it was being heavily observed with several satellites, including the European Space Agency's X-ray satellite, XMM-Newton, and NASA's Swift X-ray and gamma-ray observatory. Just five days before the burst, Muno and his collaborators had been looking at the magnetar with XMM-Newton and saw it in the relatively calm state in which he had originally found it.

As most magnetars do, it produced a beam of X-ray light that, like the beam from a lighthouse, swept across Earth once every ten seconds. This allowed its rotational rate to be determined very precisely. The event that produced the burst also caused the magnetar to shine 100 times more brightly, created three separate beams that sweep past Earth where previously only one had existed, and sped up its rotation rate by about a thousandth of a second.

Muno says more work is required to understand what happened with the magnetar, because it is built of matter far denser than anything on Earth, and its composition is still a mystery.

However, it is possible to make educated guesses by extending theories developed to explain other neutron stars. The magnetic fields inside the neutron star are probably wound up, like a twisted spring. In a manner somewhat similar to plate tectonics here on Earth, as the magnetic fields unwind, they put stress on the outer crust. The crust would resist these stresses for a while, but would eventually fracture, producing a seismic event. The fractures would cause the magnetar's surface to shine brightly from multiple sources.

Also, there is reason to think that part of the interior of the neutron star is liquid and may be rotating faster than the crust. The seismic event could cause this fluid to become attached to the crust, so that the outer crust would speed up slightly.

"So we think the crust cracked," Muno says, adding that the observations are important for two reasons. "First, we have now seen another way in which these exotic objects dissipate their internal fields as they age.”

"Second, this event was only spotted because a team of us were concentrating hard on this newly discovered object," he adds. "The fact that we saw the event only a year after we discovered the magnetar implies that dozens more could be lurking in our Galaxy."

"If we find many more of these magnetars, we will have to re-evaluate our understanding of what happens when stars die," says Gianluca Israel, an Italian astronomer who is publishing a separate paper on the magnetar with his collaborators in the Astrophysical Journal.

Muno is lead author of a paper appearing this week in Monthly Notices of the Royal Astronomical Society.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMZR97DWZE_index_0.html

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>