Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a Unified Description of Dark Energy and Dark Matter

04.04.2007
In the past decade, cosmology has entered an era of high precision, and in the future it may become a unique laboratory to test theories of fundamental physics, from gravitation laws to microphysics. Amongst the many questions raised by this science in turmoil, one of the most important is indisputably the one of the energy content of the Universe.

Knowing what the Universe is precisely made of, and in which proportions, allows not only to determine its age but also to reconstruct the history, to predict its past and future. In fact in the attempt to solve this question cosmologists have made two of the most promising discoveries in the history of modern physics: the existence of dark matter and dark energy.

While dark matter is unavoidable to explain at the same time the angular fluctuations of the cosmic microwave background and the formation and the properties of galaxies, dark energy has been originally invoked to account for the observed recent acceleration of the cosmic expansion. The so-called concordance model of cosmology assumes that this dark energy is in fact the cosmological constant once introduced by Einstein himself as an attempt to incorporate Mach’s principle within general relativity. However, the usual interpretation of the cosmological constant in terms of quantum vacuum fluctuations is in disagreement with observed value by a few dozens orders of magnitude! Furthermore, as the vacuum energy is assumed constant everywhere at all times, it is hard to explain how it became dominant only a few billion years ago. This would mean that we live in a very particular, and even privileged, epoch of cosmic history… Is this an extraordinary coincidence? Yet this anthropic consideration is quite deceiving for scientists.

To overcome these difficulties, the authors, Jean-Michel Alimi and André Füzfa, have proposed the AWE Hypothesis (« Abnormally Weighting Energy ») in which the dark sector of cosmic matter violates the equivalence principle on cosmological scales. This principle, as well introduced by Einstein, assumes that all kinds of energies produce and undergo the same form of gravity. This principle is extremely well tested (to a part out of a thousand billion) in laboratories, i.e. at local scales, in contrast what would happen if violation of the equivalence principle would be scale-dependant. In other words, what would happen if the equivalence principle was rigorously verified at local scales, where dark matter and dark energy are present in tiny amount, but is violated on cosmological scales where dark matter and dark energy are dominant? The authors have precisely shown that this could naturally happen if some particles, those of dark matter for instance, do not couple to gravitation in the same way as ordinary matter. These particles would therefore see gravitational fields with a gravitational strength different from ordinary matter. The authors have answered these questions by showing how at a given scale the gravitational strength becomes dependent on dark matter concentration…

If the amount of dark matter at sub-galactic scales is negligible, so is the amplitude of this effect. This is not the case on cosmological scales where dark matter dominates the energy content of the Universe. The team has shown that over such cosmic distances, ordinary matter has experienced a stronger cosmic expansion, as its own gravitational coupling strength has been adapting to the dark matter domination. This change in the matter gravitational coupling results in an accelerating cosmic expansion until equilibrium is reached such that the gravitational coupling on cosmological scales stabilizes at a value which differs from the one measured in our Solar system. The resulting dark energy mechanism exhibits key features which appear very promising. (i) First, it does not require the existence of negative pressures such as in the case of the cosmological constant or other proposed models like quintessence. (ii) It allows explaining naturally the cosmic coincidence as result of the stabilization mechanism of the gravitational constant during the matter-dominated era. (iii) It fairly accounts for the Hubble diagram of type Ia supernovae by predicting independently the amount of ordinary matter and dark matter as obtained by the detailed analysis of cosmic microwave background anisotropies. This suggests an explanation to the remarkable adequacy of the concordance model while predicting an age of the Universe which is compatible with existing observations. Finally, (iv) in the future this mechanism leads to a decelerated cosmic expansion described by the well-known Einstein-de Sitter cosmological model. Most important is the AWE hypothesis allows reducing dark energy as a new property of gravitation: the anomalous gravity of dark matter.

Jean-Michel Alimi | alfa
Further information:
http://www.obspm.fr/actual/nouvelle/mar07/awe.en.shtml

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>