Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a Unified Description of Dark Energy and Dark Matter

04.04.2007
In the past decade, cosmology has entered an era of high precision, and in the future it may become a unique laboratory to test theories of fundamental physics, from gravitation laws to microphysics. Amongst the many questions raised by this science in turmoil, one of the most important is indisputably the one of the energy content of the Universe.

Knowing what the Universe is precisely made of, and in which proportions, allows not only to determine its age but also to reconstruct the history, to predict its past and future. In fact in the attempt to solve this question cosmologists have made two of the most promising discoveries in the history of modern physics: the existence of dark matter and dark energy.

While dark matter is unavoidable to explain at the same time the angular fluctuations of the cosmic microwave background and the formation and the properties of galaxies, dark energy has been originally invoked to account for the observed recent acceleration of the cosmic expansion. The so-called concordance model of cosmology assumes that this dark energy is in fact the cosmological constant once introduced by Einstein himself as an attempt to incorporate Mach’s principle within general relativity. However, the usual interpretation of the cosmological constant in terms of quantum vacuum fluctuations is in disagreement with observed value by a few dozens orders of magnitude! Furthermore, as the vacuum energy is assumed constant everywhere at all times, it is hard to explain how it became dominant only a few billion years ago. This would mean that we live in a very particular, and even privileged, epoch of cosmic history… Is this an extraordinary coincidence? Yet this anthropic consideration is quite deceiving for scientists.

To overcome these difficulties, the authors, Jean-Michel Alimi and André Füzfa, have proposed the AWE Hypothesis (« Abnormally Weighting Energy ») in which the dark sector of cosmic matter violates the equivalence principle on cosmological scales. This principle, as well introduced by Einstein, assumes that all kinds of energies produce and undergo the same form of gravity. This principle is extremely well tested (to a part out of a thousand billion) in laboratories, i.e. at local scales, in contrast what would happen if violation of the equivalence principle would be scale-dependant. In other words, what would happen if the equivalence principle was rigorously verified at local scales, where dark matter and dark energy are present in tiny amount, but is violated on cosmological scales where dark matter and dark energy are dominant? The authors have precisely shown that this could naturally happen if some particles, those of dark matter for instance, do not couple to gravitation in the same way as ordinary matter. These particles would therefore see gravitational fields with a gravitational strength different from ordinary matter. The authors have answered these questions by showing how at a given scale the gravitational strength becomes dependent on dark matter concentration…

If the amount of dark matter at sub-galactic scales is negligible, so is the amplitude of this effect. This is not the case on cosmological scales where dark matter dominates the energy content of the Universe. The team has shown that over such cosmic distances, ordinary matter has experienced a stronger cosmic expansion, as its own gravitational coupling strength has been adapting to the dark matter domination. This change in the matter gravitational coupling results in an accelerating cosmic expansion until equilibrium is reached such that the gravitational coupling on cosmological scales stabilizes at a value which differs from the one measured in our Solar system. The resulting dark energy mechanism exhibits key features which appear very promising. (i) First, it does not require the existence of negative pressures such as in the case of the cosmological constant or other proposed models like quintessence. (ii) It allows explaining naturally the cosmic coincidence as result of the stabilization mechanism of the gravitational constant during the matter-dominated era. (iii) It fairly accounts for the Hubble diagram of type Ia supernovae by predicting independently the amount of ordinary matter and dark matter as obtained by the detailed analysis of cosmic microwave background anisotropies. This suggests an explanation to the remarkable adequacy of the concordance model while predicting an age of the Universe which is compatible with existing observations. Finally, (iv) in the future this mechanism leads to a decelerated cosmic expansion described by the well-known Einstein-de Sitter cosmological model. Most important is the AWE hypothesis allows reducing dark energy as a new property of gravitation: the anomalous gravity of dark matter.

Jean-Michel Alimi | alfa
Further information:
http://www.obspm.fr/actual/nouvelle/mar07/awe.en.shtml

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>