Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reaching the parts .…. with Herschel and SPIRE

04.04.2007
A UK-led instrument which will study a previously unexplored part of the Universe leaves the UK this week to be installed on the European Space Agency’s Herschel spacecraft in Germany.

Herschel, a multi purpose space observatory, is scheduled to launch in 2008, in a dual configuration with ESA’s cosmic microwave background mission, Planck. The spacecraft will view the Universe in the far and sub-millimetre wavelength bands and will study the process of how stars form and evolve. As well as looking at our own galaxy and its evolution, Herschel will look at how galaxies formed in the early Universe on a grand scale.

Professor Keith Mason, CEO of the Science and Technology Facilities Council, said, ”What is particularly exciting about Herschel is that it will be able to study, in an unrestricted way, a large area of the Universe (between 200 and 400 microns) that cannot be viewed from Earth. The instruments onboard really will be probing the hidden areas of our Universe.”

With a sophisticated payload the spacecraft will also be able to study the atmospheres around planets, comets and satellites. There are three instruments onboard Herschel:- SPIRE (Spectral and Photometric Imaging Receiver), HIFI (the Heterodyne Instrument for the Far Infrared) and PACS (Photodetector Array Camera and Spectrometer).

The SPIRE instrument has been built, assembled and tested at Rutherford Appleton Laboratory in Oxfordshire by an international consortium from Europe, US, Canada and China. Professor Matt Griffin from Cardiff University who is Principal Investigator for SPIRE said, “SPIRE is designed to exploit Herschel’s unique capabilities in addressing two of the most prominent questions in astrophysics:- how and when did galaxies form and how do stars form?”

He adds, “Herschel will have the largest astronomical telescope yet flown in space, and it will cover a part of the spectrum that is vital to our knowledge of the universe, but poorly studied so far. Previous missions with much smaller telescopes have started to look at this area, and now Herschel will do so with far better sensitivity and image quality.

SPIRE is being transported to Astrium’s test facility in Friedrichschafen in Germany where it will be tested alongside the other instruments before being assembled onto the spacecraft next year.

Eric Sawyer, SPIRE Project Manager from Rutherford Appleton Laboratory said, “SPIRE is made up of three elements – the focal plane unit which will be inside the Herschel cryostat, responsible for keeping all the spacecraft’s instrumentation cool, and two boxes of warm electronics which will be used to control the instrument and collect data. This is a huge milestone for the SPIRE team, many of whom have been working on the project since its initial conception more than a decade ago.”

There will be an opportunity to find out more about the mission and see the Herschel spacecraft being assembled at Astrium in Friedrichshafen, Germany. Further details will be available in due course.

Julia Maddock | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>