Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NAU researchers find possible caves on Mars

03.04.2007
Applying techniques used to scope out caves on Earth to probe the possibility of caves on Mars is paying off.

NAU researchers Glen Cushing and Jut Wynne, working at the U.S. Geological Survey, propose that photos from the Mars Odyssey mission reveal football-field size holes that could be entrances to caves.

"If there is life on Mars, there is a good chance you'd find it in caves," said Wynne, an NAU graduate student in biological sciences and project leader for the USGS Earth-Mars Cave Detection Program.

He said the possible discovery could lead to more focused Mars explorations.

Martian caves are considered the "best potential havens for life" because they would be protected from surface radiation and other factors, he said.

"The Martian surface is an extremely harsh environment, so the significance of caves is in their protective nature," said Cushing, a graduate teaching assistant in NAU's Department of Physics and Astronomy, who was the first to spot the black areas on the photographs. "Caves on Mars could become habitats for future explorers, or could be the only structures that preserve evidence of past or present microbial life."

Cushing and Wynne, along with Tim Titus, an astrophysicist with USGS, and Phil Christensen, the chief scientist for the NASA imaging instrument and a researcher from Arizona State University, recently submitted their findings in a research paper at the 38th Lunar and Planetary Science Conference.

"We're suggesting that the seven black spots are skylights to areas where the surface may have collapsed into a chamber below," Wynne said. "Preserved evidence of past life on Mars might only be found in caves, and such discovery would be of unparalleled significance."

The claim for caves is based on an analysis of photographs from the Thermal Emission Imaging System aboard NASA's Mars Odyssey orbiter, which revealed seven black spots near a massive Martian volcano, Arsia Mons. Although this area of Mars is known for geological occurrences, the researchers said the dark spots do not look like impact craters because they don't have raised rims or blast patterns.

"This is a very interesting discovery with positive implications," said Nadine Barlow, an associate professor in physics and astronomy at NAU and expert on Martian impact craters. "Caves on Mars could be good places for long-term ice accumulation and that would make them ideal locations to look for life on Mars as well as valuable reservoirs for water to support future human exploration of the planet."

The Earth-Mars Cave Detection Program's overall objective is to develop techniques for systemically detecting caves on Earth in the thermal infrared and then applying these techniques to searching for caves on Mars, Wynne explained.

The team reported possible caverns ranging from 330 to 825 feet wide and 425 feet deep They've been named after loved ones of the researchers: Dena, Chloe, Wendy, Annie, Abbey, Nikki and Jeanne.

Christensen said the first avenue for further observations could be provided by NASA's latest Red Planet probe, the Mars Reconnaissance Orbiter.

"The spacecraft's high-resolution camera could take a closer look at the seven sisters—including sidelong glances that might show whether the features open up into wider chambers beneath," Christensen said.

Diane Rechel | EurekAlert!
Further information:
http://www.nau.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>