Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traces of nanobubbles determine nanoboiling

02.04.2007
Using a microscope and some extreme “snapshot” photography with shutter speeds only a few nanoseconds long, researchers from the National Institute of Standards and Technology (NIST) and Cornell University have uncovered the traces of ephemeral “nanobubbles” formed in boiling water on a microheater. Their observations* suggest an added complexity to the everyday phenomenon of boiling, and may affect technologies as diverse as inkjet printers and some proposed cancer therapies.

You might think that the science of boiling had been worked out some time ago, but it still has some mysteries, particularly at the nanometer scale. As water and other fluids change from their liquid state to a vapor, bubbles of the vapor form. The bubbles usually form at “nucleation sites,” which can be small surface irregularities on the container or tiny suspended particles in the fluid. The exact onset of boiling depends on the presence and nature of these sites.

To observe the process, the NIST/Cornell team used a unique ultrafast laser strobe microscopy technique with an effective shutter speed of eight nanoseconds to photograph bubbles growing on a microheater surface about 15 micrometers wide. At this scale, a voltage pulse of only five microseconds superheats the water to nearly 300 °C, creating a microbubble tens of microns in diameter. When the pulse ends, the microbubble collapses as the water cools. What the team found was that if a second voltage pulse follows closely enough, the second microbubble forms earlier during the pulse and at a lower temperature apparently, as conjectured by the team, because nanobubbles formed by the collapse of the first bubble become new nucleation sites for the growth of later bubbles. The nanobubbles themselves are too small to observe, but by changing the timing between voltage pulses and observing how long it takes the second microbubble to form, the researchers were able to estimate the lifetime of the nanobubbles—roughly 100 microseconds.

These experiments are believed to be the first evidence that nanoscale bubbles can form on hydrophilic surfaces (previous evidence of nanobubbles was found only for hydrophobic surfaces like oilcloth) and the method for measuring nanobubble lifetimes may improve models for optimal heat transfer design in nanostructures. The work has immediate implications for inkjet printing, in which a metal film is heated with a voltage pulse to create a bubble that is used to eject a droplet of ink through a nozzle. If inkjet printing is pushed to higher speeds (repetition rates above about 10 kilohertz), the work suggests, nanobubbles on the heater surface between pulses will make it difficult or impossible to control bubble formation properly.

The findings also may impact proposed thermal cancer therapies in which nanoscale objects are designed to accumulate in tumors and are subsequently heated remotely by infrared radiation or alternating magnetic fields. Each particle acts as a nanoscale heater, with nanobubbles being created if the applied radiation is sufficient. The bubbles may have a therapeutic effect through additional heat delivered and mechanical stresses they may impart to the surrounding tissue.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2007_0330_nanobubbles.htm

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>