Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traces of nanobubbles determine nanoboiling

02.04.2007
Using a microscope and some extreme “snapshot” photography with shutter speeds only a few nanoseconds long, researchers from the National Institute of Standards and Technology (NIST) and Cornell University have uncovered the traces of ephemeral “nanobubbles” formed in boiling water on a microheater. Their observations* suggest an added complexity to the everyday phenomenon of boiling, and may affect technologies as diverse as inkjet printers and some proposed cancer therapies.

You might think that the science of boiling had been worked out some time ago, but it still has some mysteries, particularly at the nanometer scale. As water and other fluids change from their liquid state to a vapor, bubbles of the vapor form. The bubbles usually form at “nucleation sites,” which can be small surface irregularities on the container or tiny suspended particles in the fluid. The exact onset of boiling depends on the presence and nature of these sites.

To observe the process, the NIST/Cornell team used a unique ultrafast laser strobe microscopy technique with an effective shutter speed of eight nanoseconds to photograph bubbles growing on a microheater surface about 15 micrometers wide. At this scale, a voltage pulse of only five microseconds superheats the water to nearly 300 °C, creating a microbubble tens of microns in diameter. When the pulse ends, the microbubble collapses as the water cools. What the team found was that if a second voltage pulse follows closely enough, the second microbubble forms earlier during the pulse and at a lower temperature apparently, as conjectured by the team, because nanobubbles formed by the collapse of the first bubble become new nucleation sites for the growth of later bubbles. The nanobubbles themselves are too small to observe, but by changing the timing between voltage pulses and observing how long it takes the second microbubble to form, the researchers were able to estimate the lifetime of the nanobubbles—roughly 100 microseconds.

These experiments are believed to be the first evidence that nanoscale bubbles can form on hydrophilic surfaces (previous evidence of nanobubbles was found only for hydrophobic surfaces like oilcloth) and the method for measuring nanobubble lifetimes may improve models for optimal heat transfer design in nanostructures. The work has immediate implications for inkjet printing, in which a metal film is heated with a voltage pulse to create a bubble that is used to eject a droplet of ink through a nozzle. If inkjet printing is pushed to higher speeds (repetition rates above about 10 kilohertz), the work suggests, nanobubbles on the heater surface between pulses will make it difficult or impossible to control bubble formation properly.

The findings also may impact proposed thermal cancer therapies in which nanoscale objects are designed to accumulate in tumors and are subsequently heated remotely by infrared radiation or alternating magnetic fields. Each particle acts as a nanoscale heater, with nanobubbles being created if the applied radiation is sufficient. The bubbles may have a therapeutic effect through additional heat delivered and mechanical stresses they may impart to the surrounding tissue.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2007_0330_nanobubbles.htm

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>