Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Spitzer Telescope Finds Planets Thrive Around Stellar Twins

30.03.2007
Our universe could be packed with worlds with two or more suns, University of Arizona Steward Observatory astronomers and their colleagues conclude from new research with NASA's Spitzer Space Telescope. They will publish their findings in the Astrophysical Journal. Spitzer is flying UA Steward Observatory's multiband imaging photometer. The following release is forwarded from the Jet Propulsion Laboratory Media Relations Office in Pasadena, Calif. Contact information is listed at the end.

The double sunset that Luke Skywalker gazed upon in the film "Star Wars" might not be a fantasy.

Astronomers using NASA's Spitzer Space Telescope have observed that planetary systems ­ dusty disks of asteroids, comets and possibly planets ­ are at least as abundant in twin-star systems as they are in those, like our own, with only one star. Since more than half of all stars are twins, or binaries, the finding suggests the universe is packed with planets that have two suns. Sunsets on some of those worlds would resemble the ones on Luke Skywalker's planet, Tatooine, where two fiery balls dip below the horizon one by one.

"There appears to be no bias against having planetary system formation in binary systems," said David Trilling of the University of Arizona, Tucson, lead author of a new paper about the research appearing in the April 1 issue of the Astrophysical Journal. "There could be countless planets out there with two or more suns."

Previously, astronomers knew that planets could form in exceptionally wide binary systems, in which stars are 1,000 times farther apart than the distance between Earth and the sun, or 1,000 astronomical units. Of the approximately 200 planets discovered so far outside our solar system, about 50 orbit one member of a wide stellar duo.

The new Spitzer study focuses on binary stars that are a bit more snug, with separation distances between zero and 500 astronomical units. Until now, not much was known about whether the close proximity of stars like these might affect the growth of planets. Standard planet-hunting techniques generally don't work well with these stars, but, in 2005, a NASA-funded astronomer found evidence for a planet candidate in one such multiple-star system (http://www.jpl.nasa.gov/news/news.cfm?release=2005-115).

Trilling and his colleagues used Spitzer's infrared, heat-seeking eyes to look not for planets, but for dusty disks in double-star systems. These so-called debris disks are made up of asteroid-like bits of leftover rock that never made it into rocky planets. Their presence indicates that the process of building planets has occurred around a star, or stars, possibly resulting in intact, mature planets.

In the most comprehensive survey of its kind, the team looked for disks in 69 binary systems between about 50 and 200 light-years away from Earth. All of the stars are somewhat younger and more massive than our middle-aged sun. The data show that about 40 percent of the systems had disks, which is a bit higher than the frequency for a comparable sample of single stars. This means that planetary systems are at least as common around binary stars as they are around single stars.

In addition, the astronomers were shocked to find that disks were even more frequent (about 60 percent) around the tightest binaries in the study. These coziest of stellar companions are between zero and three astronomical units apart. Spitzer detected disks orbiting both members of the star pairs, rather than just one. Extra-tight star systems like these are where planets, if they are present, would experience Tatooine-like sunsets.

"We were very surprised to find that the tight group had more disks," said Trilling. "This could mean that planet formation favors tight binaries over single stars, but it could also mean tight binaries are just dustier. Future observations should provide a better answer."

The Spitzer data also reveal that not all binary systems are friendly places for planets to form. The telescope detected far fewer disks altogether in intermediately spaced binary systems, between three to 50 astronomical units apart. This implies that stars may have to be either very close to each other, or fairly far apart, for planets to arise.

"For a planet in a binary system, location is everything," said co-author Karl Stapelfeldt of NASA's Jet Propulsion Laboratory in Pasadena, Calif.

"Binary systems were largely ignored before," added Trilling. "They are more difficult to study, but they might be the most common sites for planet formation in our galaxy."

Other authors on the paper include: John Stansberry, George Rieke and Kate Su of the University of Arizona; Richard Gray of the Appalachian State University, Boone, N.C.; Chris Corbally of the Vatican Observatory, Tucson; Geoff Bryden, Andy Boden and Charles Beichman of JPL; and Christine Chen of the National Optical Astronomical Observatory, Tucson.

JPL manages Spitzer for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. The multiband imaging photometer for Spitzer was built by Ball Aerospace Corporation, Boulder, Colo.; the University of Arizona; and Boeing North American, Canoga Park, Calif. Co-author Rieke is the principal investigator.

For more information and graphics, visit www.spitzer.caltech.edu/Media and http://www.nasa.gov/spitzer .

Lori Stiles | University of Arizona
Further information:
http://www.spitzer.caltech.edu/Media
http://www.nasa.gov/spitzer

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>