Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Technique Creates Metal Memory and Could Lead To Vanishing Dents

Crumpled kitchen foil that lays flat for reuse. Bent bumpers that straighten overnight. Dents in car doors that disappear when heated with a hairdryer. These and other physical feats may become possible with a technique to make memory metals discovered by researchers at the University of Illinois.

Normally, when a piece of metal - such as a paperclip - is bent, the change in shape becomes permanent. But, when heat is added to bent metal films having the right microstructure, the researchers found, the films return to their original shapes. The higher the temperature, the sooner the metal films revert.

"It's as though the metal has a memory of where it came from," said Taher A. Saif, a professor of mechanical science and engineering at Illinois, and senior author of a paper that describes the findings in the March 30 issue of the journal Science.

In the study, Saif and graduate students Jagannathan Rajagopalan and Jong H. Han explored aluminum films and gold films. The aluminum films were 200 nanometers thick, 50-60 microns wide and 300-360 microns long. The gold films were 200 nanometers thick, 12-20 microns wide and 185 microns long. The average grain size in the aluminum films was 65 nanometers; in the gold films, 50 nanometers.

"We found that the type of metal doesn't matter, said Saif, who also is a Willett Faculty Scholar and a researcher at the university's Micro and Nanotechnology Laboratory. "What matters is the size of the grains in the metal's crystalline microstructure, and a distribution in the size."

Grain sizes are typically one-third to one-half the thickness of a metal film. Raising the temperature by about 50 degrees Celsius causes the grains to grow larger.

If the grains are uniformly too small, the metal will be brittle and break while being bent. If the grains are uniformly too large, the metal will bend, but then stay in that position. To return to the initial shape, what's needed is a balance between brittleness and malleability.

That balance can be achieved through a combination of small and large grains, the researchers report.

Variations in the microstructure lead to plastic deformation in the larger grains and elastic accommodations in the smaller grains, Saif said. The bigger grains bend, but push and pull on the smaller grains, which become elastically deformed like a spring. If the metal is then left alone, the smaller grains will release this energy and force the bigger grains back to their original shapes over time. This local release of energy can be speeded up by applying heat.

Controlling the crystalline microstructure of thin films also could reduce energy loss in oscillators and resonators used in electronic circuits, Saif said. Oscillators and resonators are found in products ranging from air bag sensors and camcorders to digital projectors and global positioning systems.

"If the grains that constitute the metal films in these devices are between 50 and 100 nanometers, they can be very lossy," Saif said. "However, if we decrease the grain size, we can reduce much of the energy loss."

The work was funded by the National Science Foundation.

James E. Kloeppel | University of Illinois
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>