Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Impossible Siblings

30.03.2007
Unique Data Collected on Double Asteroid Antiope

Combining precise observations obtained by ESO's Very Large Telescope with those gathered by a network of smaller telescopes, astronomers have described in unprecedented detail the double asteroid Antiope, which is shown to be a pair of rubble-pile chunks of material, of about the same size, whirling around one another in a perpetual pas de deux. The two components are egg-shaped despite their very small sizes.

The asteroid (90) Antiope was discovered in 1866 by Robert Luther from Dusseldorf, Germany. The 90th asteroid ever discovered, its name comes from Greek mythology. In 2000, William Merline and his collaborators found that the asteroid was composed of two similarly-sized components, making it a truly 'double' asteroid, one of the very first of this kind in the main belt of asteroids that lies between the orbits of Mars and Jupiter.

"The way double asteroids have formed in the main belt is still unclear," says Pascal Descamps, from the Paris Observatory and lead-author of the paper presenting the new results. "The Antiope system provides us with a unique opportunity to know more about this class of objects and we decided to study it in detail," he adds.

Descamps, with colleague Franck Marchis from the University of California at Berkeley, USA, therefore initiated a large campaign of observations for more than two and a half years starting in January 2003. They used the NACO instrument on ESO's Very Large Telescope at Cerro Paranal for the larger part, while using one of the Keck telescopes for some additional observations in 2005.

NACO allows the astronomers to perform adaptive optics observations, providing images that are mostly free from the blurring effect of the atmosphere. With these, it was always possible to separate clearly the two components of the Antiope system, thereby obtaining a large set of very precise measurements of their positions.

"With this unique set of data, we could determine with utmost precision the course of the two pieces of cosmic rock as they turn around each other," says Marchis. "We found that the two objects are separated by 171 km, and that they perform their celestial dance in 16.5 hours. In fact, we now know this orbital period with a precision of better than half a second."

With the orbit determined, the astronomers could derive the total mass of the system: 828 millions million tons, and found the two objects were rotating around their own axes at the same speed as they orbit each other. Thus, in the same way than the Moon does to the Earth, they always present to each other the same side (something astronomers call 'tidal locking'). Moreover, the two asteroids rotate in the same plane as they orbit each other.

The adaptive optics observations could, however, never resolve the shape of the individual components as they are too small. "But with the new orbit, we could precisely predict that from the end of May to the end of November 2005 the system would present eclipses and occultations," says Marchis. "Such 'mutual events' are unique opportunities to learn a great deal about this double asteroid."

The astronomers invited observers around the world to turn their eyes on the asteroid pair to measure the drops in brightness resulting from the predicted events. Over the six-month period, amateurs and professionals from as far afield as Brazil, Chile, France, Réunion Island, South Africa, and the USA, observed repeated occultations as well as shadows passing over one of the pair.

With this new data, Descamps, Marchis and their team, found enough evidence that the two mountain-like chunks of material forming the Antiope system have the shape of ellipsoids, that is, slightly deformed spheres, almost similar in size: 93.0 x 87.0 x 83.6 km and 89.4 x 82.8 x 79.6 km, respectively. Each asteroid in the pair is thus roughly the size of a large city.

Perhaps the most astonishing result is the fact that the two components have a shape close to the one predicted by the French scientist Edouard Roche in 1849 for self-gravitating, rotating fluid objects orbiting each other and tidally locked.

Of course, the asteroids are not gaseous nor liquids, they are solids, but their internal structure must be so loose that their bodies can readjust themselves due to the gravitational influence of the companion.

The scientists were also able to derive the density of the objects, only a quarter higher than the density of water. This means the asteroids are very porous, having 30 percent empty space, and thereby suggesting a rubble-pile structure. This structure could explain why it was easier for the asteroids to reach equilibrium shapes, while being so small.

"Despite this intensive study, the origin of this unique doublet still remains a mystery," says Descamps. "The formation of such a large double system is an improbable event and represents a formidable challenge to theory. One possibility is that a parent body was spun up so much that it took the shape of an apple core, then split into two similar-sized pieces."

More Information

The team is composed of P. Descamps, F. Marchis, F. Vachier, F. Colas, J. Berthier, D. Hestroffer, R. Viera-Martins, and M. Birlan (Observatoire de Paris, France), T. Michalowski and M. Polinska (Adam Mickiewicz University, Poznan, Poland), M. Assafin (Observatorio do Valongo/UFRJ, Brazil), P.B. Dunckel (Rattlesnake Creek Observatory, USA), W. Pych (Nicolaus Copernicus Astronomical Center, Warsaw, Poland), J.-P. Teng-Chuen-Yu, A. Peyrot, B. Payet, J. Dorseuil, Y. Léonie, and T. Dijoux (Makes Observatory, Réunion Island, France). F. Marchis is also at the University of California at Berkeley, USA.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2007/pr-18-07.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>