Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solar wind electric sail propulsion may revolutionise space travel

The goal of sending probes anywhere in the Solar System in reasonable time has remained elusive.

Finnish scientists have invented a new propulsion method which utilises the solar wind, promises high speed for small payloads and may be technically possible to build in the near future.

The solar wind is a very tenuous but high speed (300-800 km/s) plasma stream blowing radially outward from the Sun. The solar wind powers the aurora and governs space weather. The average dynamic pressure (force per unit area) of the solar wind is 2 nanopascal, corresponding to 0.2 grams weight per square kilometre.

Using such a weak dynamic pressure for pushing a spacecraft requires a very large area sail, much larger than what can be provided by a solid surface. In the electric sail, the sail is formed by an electric field existing around a thin, charged tether whose voltage is maintained by an onboard solar-powered electron gun. A 20-km long tether made of wire which is thinner than human hair fits in a small reel, but gives a square kilometre effective area when stretched out in space and charged. In the paper published today in Annales Geophysicae , two-dimensional first-principles plasma simulations run on a supercomputer were used to compute the thrust per unit tether length in different solar wind conditions and tether voltages to check the feasibility of the method. Theoretical analysis and one-dimensional simulations were used to validate the results.

The results indicate that ~50 nN/m force per unit length of the tether can be achieved in average solar wind, which could enable final speeds in the range 50-100 km/s (10-20 AU/year) for a lightweight spacecraft. At such high speed one could reach e.g. Pluto in less than four years and fly out of the heliosphere into interstellar space in less than 15 years. Because the electric sail needs no propellant or other consumables, it might also provide cheap transportation of e.g. raw materials such as water mined from asteroids and used for in-situ fuel making at high Earth orbit.

Eija Vallinheimo | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>