Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists shine a light, produce startling liquid jet

29.03.2007
It is possible to manipulate small quantities of liquid using only the force of light, report University of Chicago and French scientists in the March 30 issue of Physical Review Letters.

"In previous work, people figured out that you can move individual particles with lasers," said Robert Schroll, graduate student in physics at the University of Chicago and lead author of the PRL article. Now it appears that lasers can also be used to generate bulk flow in fluids. "As far as we know, we're the first to show this particular effect," Schroll said.

Schroll and Wendy Zhang, Assistant Professor in Physics at the University of Chicago, carried out the project with Régis Wunenburger, Alexis Casner and Jean-Pierre Delville of the University of Bordeaux I. The technique might offer a new way to control the flow of fluids through extremely narrow channels for biomedical and biotechnological applications.

In their experiment, the Bordeaux scientists shined a laser beam through a soapy liquid. The laser produced a long jet of liquid that broke up into droplets after traversing a surprisingly long distance.

"I thought this was just so weird because I know when liquid is supposed to break up, and this one isn't doing it," Zhang said.

Physicists know that lasers can set liquid in motion through heating effects, but heat was not a factor in this case. The liquid used in the Bordeaux experiment is a type that absorbs very little light. Heating the liquid would require more light absorption. In this case, the Chicago team's theoretical calculations matched the Bordeaux team's experimental results: the mild force of the light itself drives the liquid motion.

"Light is actually pushing onto us slightly. This effect is called radiation pressure," Zhang said.

This gentle pressure generated by photons—particles of light—ordinarily goes unnoticed. But the liquid used in the Bordeaux experiment has such an incredibly weak surface that even light can deform it.

The experimental liquid was a mixture of water and oil. "It's basically soap," Zhang said. But Delville and his associates have precisely mixed the liquid to display different characteristics under certain conditions.

"A lot of shampoos and conditioners are designed to do that," Zhang said. Shampoo poured out of a bottle exists in one state. Add water and it turns into another state. Delville's liquid behaves similarly, except that he has rigged it to change its properties at 35 degrees Celsius (95 degrees Fahrenheit). Below 35 degrees Celsius, the liquid takes one form. Above that temperature, it separates into two distinct forms of differing density.

Physicists refer to this as a "phase change." Many phase changes, like changing boiling water into steam, are familiar in everyday life. The phase change that the Bordeaux group engineered in its laboratory is more exotic. As the soapy liquid approached the critical temperature, it took on a pearly appearance. This color change signaled the intense reflection, or scattering, of photons.

"The photon will scatter off some part of the fluid, but moves away with the same energy that it came in with," Schroll explained. "This scattering effect is what's responsible for the flow that we see. Because the photon doesn't lose energy it doesn't transfer any energy into the fluid itself, so it doesn't cause any heating."

Delville first observed this effect after completing a previous experiment involving the behavior of the same fluid under a less intense laser beam. He turned up the laser power to see what it could do, much the same way a motorist might test the performance of a powerful car on a deserted road.

"He turned up the power and then saw this amazing thing," Zhang said. "Because he has a lot of experience with optics, he realized that what he saw was strange."

Further research may determine whether light-driven flow could provide a new twist to microfluidics, the science of controlling fluid flow through channels thinner than a human hair. In microfluidics, researchers bring together tiny streams of droplets or liquids to produce chemical reactions. Laser light can do that, too, Zhang said, "but it does all that completely differently from conventional microfluidics."

In conventional microfluidics, scientists etch channels in computer chips and connect them to syringe pumps. It's a relatively easy process, Zhang said, but a laser-driven microfluidics system might allow researchers to make more rapid adjustments.

"Here I've created a channel, but I didn't have to make anything. I just shined a light," Zhang said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>