Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2-photon absorbing molecules fabricate polymer features just 65 nanometers wide

28.03.2007
Producing three-dimensional polymer line structures as small as 65 nanometers wide just became easier with new two-photon absorbing molecules that are sensitive to laser light at short wavelengths, allowing researchers to create them without highly sophisticated fabrication methods.
Fabricating such small features normally requires expensive electron beam or extreme ultraviolet lithography equipment. However, using a technique called 3D multi-photon lithography simplifies the process and reduces the cost. The technique could compete with existing processes for fabricating nanoscale electronic, photonic and microfluidic devices.

"Being able to obtain line widths down to 65 nanometers, which is substantially below prior published work of 100 nanometers, opens up new applications for multi-photon lithography," said Joseph Perry, a professor in the Georgia Tech School of Chemistry and Biochemistry and the Center for Organic Photonics and Electronics.

The technique scans a laser beam across a substrate coated with a polymer resin containing a unique dye to create a desired hardened polymer structure. The laser writing process takes advantage of the fact that the chemical reaction of cross-linking occurs only where molecules have absorbed two photons of light. Since the rate of two-photon absorption drops off rapidly with distance from the laser's focal point, only molecules at the focal point receive enough light to absorb two photons.

The fabrication method and dye were described in the March 19 issue of Optics Express. The research was supported by the Office of Naval Research APEX Consortium and the National Science Foundation, through the Science and Technology Center for Materials and Devices for Information Technology Research.

Seth Marder and Stephen Barlow, also researchers in the School of Chemistry and Biochemistry and the Center for Organic Photonics and Electronics, synthesized the unique molecule called DAPB, 4,4'-bis(di-n-butylamino)biphenyl, to initiate the chemical reaction leading to the hardening of the polymers when exposed to laser light.

"We needed a dye with good two-photon absorption at a wavelength of 520 nanometers, so we tried DAPB," explained Perry. "DAPB proved to be very effective in this kind of lithography."

The molecule developed by Marder and Barlow is about ten times more efficient at absorbing light by two photon absorption than commercial ultraviolet photoactive materials. That efficiency allowed Perry and graduate students Wojciech Haske and Vincent Chen, research scientist Joel Hales and postdoctoral associate Wenting Dong to create 3D patterns with nanoscale lines at light intensities low enough to avoid damaging the polymers.

For the experiments, a film of the polymer resin containing DAPB was formed. When the film was exposed to the focused laser, DAPB was excited and triggered cross-linking, leaving the insoluble scanned structure on the surface of a substrate when placed in a developer solution.

Since Perry controls where the Ti: Sapphire pulsed laser scans with a computer program, the polymers can be cross-linked in any pattern including 3D stacks of straight lines that are connected and sturdy. The laser beam is turned on to expose lines of polymer and off when no line should be drawn.

Conventional lithography involves creating a specific pattern on a mask for each new layer and exposing each layer to light and developing it. With this new technique, three-dimensional layered nanostructures can be created simply by having a computer program scan a different pattern for each layer. Mask templates become unnecessary and the coating, exposing and developing processes only have to be conducted once.

"We can create essentially any pattern we want. For this work, some of the patterns look like walls or lines suspended across walls and some are like a tall stack of crisscrossed lines," noted Perry.

Perry and Marder co-founded a company in 2003 called Focal Point Microsystems that is working to commercialize this fabrication technology.

"We can write very small lines and create stacked-up grids of lines called photonic crystals," explained Perry. "This work shows that we can fabricate functional photonic micro-devices with tailored transmission capabilities."

It takes only 10 minutes to create a 20 micron by 20 micron structure with 30 layers, Perry added. Perry envisions using this technology to create compact micro-spectrometers on a chip for use in telecommunications and sensors. It may also be used as a compact way to separate the multiple wavelengths traveling through a fiber optic cable.

This type of simple, table-top technology may also be useful to fabricate customized types of circuits with many layers, which would be extremely expensive with standard methods because each layer would require a special mask.

"With the combination of the right molecule and short wavelength light, we've demonstrated that we can obtain nanoscale features. We're at 65 nanometers now and we're still trying to go smaller," said Perry.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Moon's crust underwent resurfacing after forming from magma ocean
22.11.2017 | University of Texas at Austin

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Researchers at IST Austria define function of an enigmatic synaptic protein

22.11.2017 | Life Sciences

Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes

22.11.2017 | Materials Sciences

Women and lung cancer – the role of sex hormones

22.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>