Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic fields get reconnected in turbulent plasma too, Cluster reveals

28.03.2007
Using measurements of the four ESA's Cluster satellites, a study published this week in Nature Physics shows pioneering experimental evidence of magnetic reconnection also in turbulent 'plasma' around Earth.

Magnetic reconnection – a phenomenon by which magnetic fields lines get interconnected and reconfigure themselves - is a universal process in space that plays a key role in various astrophysical phenomena such as star formation, solar explosions or the entry of solar material within the Earth's environment. Reconnection has been observed at large-scale boundaries between different plasma environments such as the boundary between Earth and interplanetary space. Plasma is a gas composed of charged particles.

An irregular behaviour of particle flows and magnetic fields causes plasma turbulence within which many small-scale boundaries can form, where reconnection has been predicted via modelling. However, thanks to Cluster this was the first time that this could be directly observed, opening up new perspectives to help us better understand the behaviour of turbulent plasma.

Our first line of defence against the incessant flow of solar particles, the Earth's magnetic field deflects most of this material around the Earth's magnetosphere. This is marked by a boundary layer called the magnetopause. As for any other planet which has a planetary magnetic field (for example Jupiter and Saturn), solar wind is decelerated from supersonic to subsonic speeds by a shock wave (called the 'bow shock') located in front of the magnetopause. The region between the bow shock and the magnetopause is called the magnetosheath.

One of the most turbulent environments in the near-Earth space, the terrestrial magnetosheath is an accessible laboratory to study in-situ turbulence, unlike the solar atmosphere or accretion disks. Characterising the properties of the magnetic turbulence in this region is of prime importance to understand its role in fundamental processes such as energy dissipation and particle acceleration.

Observing reconnection at small-scale boundaries in space requires simultaneous measurements by at least four spacecraft flying in close formation. With an inter-spacecraft distance of only 100 kilometres, on 27 March 2002 the four Cluster satellites observed reconnection within a very thin current 'sheet' embedded in the turbulent plasma with a typical size of about 100 kilometres.

A challenge for the instruments onboard, the observations show that the turbulent plasma is accelerated and heated during the reconnection process. This newly observed type of small-scale reconnection seems also to be associated with the acceleration of particles to energies much higher than their average which could explain, in part, the creation of high energy particles by the Sun.

To quote Alessandro Retinò, lead author of this study and PhD student at the Swedish Institute of Space Physics, Uppsala, Sweden, "we found reconnection in one single current sheet, so that in such an environment of irregular magnetic fields one may think that reconnection is sporadic, but this is not the case. For this particular magnetosheath crossing, a very large number of other thin current sheets was found where reconnection is very likely to occur, a subject currently under investigation by our team."

This discovery of reconnection in turbulent plasma has significant implications for the study of laboratory and astrophysical plasmas, where both turbulence and reconnection develop and thus where turbulent reconnection is very likely to occur. Possible applications range from the dissipation of magnetic energy in fusion devices on Earth to the understanding of the acceleration of high energy particles in solar explosions called solar flares.

"Magnetic reconnection, turbulence and shocks are three fundamental ingredients of the plasma Universe," says Philippe Escoubet Cluster and Double Star project scientist at ESA. "The detailed understanding of these key processes and their associated multi-scale physics is a challenge for the future of space physics. One of the lessons learned from Cluster is the need for new space missions equipped with instruments of higher sensitivity and better time resolution together with a larger number of satellites."

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMDI3T4LZE_index_0.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>