Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic fields get reconnected in turbulent plasma too, Cluster reveals

28.03.2007
Using measurements of the four ESA's Cluster satellites, a study published this week in Nature Physics shows pioneering experimental evidence of magnetic reconnection also in turbulent 'plasma' around Earth.

Magnetic reconnection – a phenomenon by which magnetic fields lines get interconnected and reconfigure themselves - is a universal process in space that plays a key role in various astrophysical phenomena such as star formation, solar explosions or the entry of solar material within the Earth's environment. Reconnection has been observed at large-scale boundaries between different plasma environments such as the boundary between Earth and interplanetary space. Plasma is a gas composed of charged particles.

An irregular behaviour of particle flows and magnetic fields causes plasma turbulence within which many small-scale boundaries can form, where reconnection has been predicted via modelling. However, thanks to Cluster this was the first time that this could be directly observed, opening up new perspectives to help us better understand the behaviour of turbulent plasma.

Our first line of defence against the incessant flow of solar particles, the Earth's magnetic field deflects most of this material around the Earth's magnetosphere. This is marked by a boundary layer called the magnetopause. As for any other planet which has a planetary magnetic field (for example Jupiter and Saturn), solar wind is decelerated from supersonic to subsonic speeds by a shock wave (called the 'bow shock') located in front of the magnetopause. The region between the bow shock and the magnetopause is called the magnetosheath.

One of the most turbulent environments in the near-Earth space, the terrestrial magnetosheath is an accessible laboratory to study in-situ turbulence, unlike the solar atmosphere or accretion disks. Characterising the properties of the magnetic turbulence in this region is of prime importance to understand its role in fundamental processes such as energy dissipation and particle acceleration.

Observing reconnection at small-scale boundaries in space requires simultaneous measurements by at least four spacecraft flying in close formation. With an inter-spacecraft distance of only 100 kilometres, on 27 March 2002 the four Cluster satellites observed reconnection within a very thin current 'sheet' embedded in the turbulent plasma with a typical size of about 100 kilometres.

A challenge for the instruments onboard, the observations show that the turbulent plasma is accelerated and heated during the reconnection process. This newly observed type of small-scale reconnection seems also to be associated with the acceleration of particles to energies much higher than their average which could explain, in part, the creation of high energy particles by the Sun.

To quote Alessandro Retinò, lead author of this study and PhD student at the Swedish Institute of Space Physics, Uppsala, Sweden, "we found reconnection in one single current sheet, so that in such an environment of irregular magnetic fields one may think that reconnection is sporadic, but this is not the case. For this particular magnetosheath crossing, a very large number of other thin current sheets was found where reconnection is very likely to occur, a subject currently under investigation by our team."

This discovery of reconnection in turbulent plasma has significant implications for the study of laboratory and astrophysical plasmas, where both turbulence and reconnection develop and thus where turbulent reconnection is very likely to occur. Possible applications range from the dissipation of magnetic energy in fusion devices on Earth to the understanding of the acceleration of high energy particles in solar explosions called solar flares.

"Magnetic reconnection, turbulence and shocks are three fundamental ingredients of the plasma Universe," says Philippe Escoubet Cluster and Double Star project scientist at ESA. "The detailed understanding of these key processes and their associated multi-scale physics is a challenge for the future of space physics. One of the lessons learned from Cluster is the need for new space missions equipped with instruments of higher sensitivity and better time resolution together with a larger number of satellites."

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMDI3T4LZE_index_0.html

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>