Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic system could be key to surgery without scars

27.03.2007
Physicians at UT Southwestern Medical Center and engineers at UT Arlington have collaborated to invent a groundbreaking system that could be key to delivering on the promise of surgery without scars.

The new technique, which is still in the developmental stage, allows for magnetically maneuvering laparoscopic surgical tools inserted into the abdominal cavity through the bellybutton or throat. The challenge remains, however, to design the new instruments and determine just how to move them once they’re inside the human body.

“A fixed hole has a limited working envelope that is conical in shape,” said Dr. Jeffrey Cadeddu, associate professor of urology and radiology and director of the Clinical Center for Minimally Invasive Treatment of Urologic Cancer. He and his colleagues describe the new surgical concept, called the Magnetic Anchoring and Guidance System, in the March edition of Annals of Surgery.

The idea of using magnets to manipulate the instruments in the abdominal cavity was formulated after Dr. Cadeddu watched a television show featuring teens who used magnets to hold studs on their lips to avoid getting their lips pierced.

“Once you think about, it’s an obvious thing,” said Dr. Cadeddu, whose team of urologists and surgeons worked with engineers from UTA’s Automation and Robotics Research Institute and the Texas Manufacturing Assistance Center to build the prototype.

The system uses a stack of magnets outside the abdomen to attract other magnets attached to laparoscopic instruments inside the abdomen. Surgeons can then move the outside magnets to position an internal camera at the best spot for seeing or to move a retractor or other surgical instrument. Once optimally positioned, the instruments can be locked in place. That allows a much greater range of maneuverability and the surgical team can more easily reposition the camera or instrument, said Dr. Cadeddu.

In animal studies, surgeons have been able to successfully remove a kidney using the Magnetic Anchoring and Guidance System.

While working on the system, Dr. Daniel Scott, assistant professor of surgery, joined UT Southwestern as director of the Southwestern Center for Minimally Invasive Surgery. He said the technology may solve the fundamental problem of guiding instruments through the abdomen for natural orifice surgery, which now inserts the instruments through the throat, colon or vagina.

“The current state of the art for laparoscopic surgery requires four or five holes. The question behind this is, can we do the surgery through only one hole and can we hide the hole in a cosmetically advantageous or less painful location,” Dr. Cadeddu said.

Study researchers concluded that “the ability to reduce the number of trocars (holes) necessary for laparoscopic surgery has the potential to revolutionize surgical practice,” but noted that there will be a learning curve for the new system and that because of the expanded maneuverability, surgeons will likely need to develop new techniques.

Also, until the system is fully tested in humans, surgeons won’t know whether fewer entry points will result in fewer complications or faster healing, advantages usually seen in moving from conventional surgery to laparoscopic surgery.

Russell Rian | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>