Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of the Basque Country team succeed in characterising boron nitride on a nanometric scale

23.03.2007
The Physics of Materials team at the University of the Basque Country (UPV/EHU), part of the Mixed Centre created between this UPV/EHU Physics of Materials team and the European Theoretical Spectroscopy Facility (ETSF), led by Ángel Rubio, has completed the first comprehensive study of the properties of boron nitrite on a nanometric scale.

The prestigious journal, "Physical Review Letters", one of the most important in the field of physics, has published three articles that summarise the findings of the team. The last of these articles may be consulted in the new issue of the journal - number 98. The thorough control and knowledge of the properties boron nitride opens the door to the design of new materials based on this compound and, likewise, has implications in other fields such as biology.

Boron nitride (BN) is a binary compound of the element boron which consists of equal proportions of boron and nitrogen and is used for coatings in reactors and insulation materials. At a nano level, according to what Ángel Rubio’s group has been able to characterise, the compound has excellent electronic and mechanical properties such as high resistance, and can emit blue light, i.e. a wavelength shorter than red, thus augmenting storage capacity in applications for optoelectronic devices such as DVD, aerials and lasers. Moreover, it forms macroscopic structures (nanostructured molecular solids) through weak, van der Waals-type interactions, which, fundamentally, are in other fields of knowledge, particularly biology and supramolecular chemistry, where molecular self-assembly is dictated by these type of interactions.

The UPV/EHU team has shown, on the one hand, the role played by these weak (van der Waals-type) interactions in the stability of these BN nanostructures [1] and, on the other, the properties of absorption and emission of blue light and near ultraviolet [2], properties that are also the subject of this latest research [3]. The results are also relevant in the understanding of the properties of other carbon compounds (nanotubes, graphene) in fields such as nanoelectronics, photonics and materials for biomedical applications (sensors, biological labels, etc). All these fields are of great current scientific interest throughout the world and great advances are expected in the short and medium term.

Collaborating on this research with Ángel Rubio, who recently received the DuPont Science Award for his notable theoretical contributions to in the field of nanoscience and molecular nanotechnology, were doctors Ludger Wirtz, Andrea Marini, Jorge Serrano and Pablo García, as well as experimental teams from Japan and Grenoble.

[1] First-Principle Description of Correlation Effects in Layered Materials, A. Marini, P. García-González and A. Rubio, Physical Review Letters 96, 136404 - 4 (2006)
[2] Excitons in boron nitride nanotubes: dimensionality effects, L. Wirtz, A. Marini and A. Rubio, Physical Review Letters 96, 126104 - 4 (2006)

[3] Vibrational properties of Hexagonal Boron Nitride: Inelastic X-ray Scattering and ab initio Calculations, J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio and L. Wirtz, Physical Review Letters 98, 095503 - 1,4 (2007)

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1239

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>