Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World First In Medical Robotics

20.03.2007
Fantastic Voyage: from science fiction to reality? École Polytechnique de Montréal researchers successfully control and navigate a wireless device inside an artery using a clinical magnetic resonance imaging (MRI) system, paving the way for novel, minimally invasive and more accurate surgeries

Some 40 years after the release of the classic science fiction movie Fantastic Voyage, researchers in the NanoRobotics Laboratory of École Polytechnique de Montréal's Department of Computer Engineering and Institute of Biomedical Engineering have achieved a major technological breakthrough in the field of medical robotics. They have succeeded for the first time in guiding, in vivo and via computer control, a microdevice inside an artery, at a speed of 10 centimetres a second.

Under the direction of Professor Sylvain Martel, holder of the Canada Research Chair in Micro/Nanosystem Development, Construction and Validation, and in collaboration with researchers at the Centre hospitalier de l'Université de Montréal (CHUM), the Polytechnique team has succeeded in injecting, propelling and controlling by means of software programs an initial prototype of an untethered device (a ferromagnetic 1.5- millimetre-diameter sphere) within the carotid artery of a living animal placed inside a clinical magnetic resonance imaging (MRI) system.

Encouraged by these results, staff at the Polytechnique NanoRobotics Laboratory are currently working to further reduce the size of the devices so that, within a few years, they can navigate inside smaller blood vessels.

"Injection and control of nanorobots inside the human body, which contains nearly 100,000 kilometres of blood vessels, is a promising avenue that could enable interventional medicine to target sites that so far have remained inaccessible using modern medical instruments such as catheters," Professor Martel explained. "In collaboration with our scientific partners, Polytechnique researchers have begun developing several types of micro- and nanodevices for novel applications, such as targeted delivery of medications to tumour sites and diagnoses using navigable bio-sensors."

The results of this scientific breakthrough were published by Professor Martel and 10 co-authors from École Polytechnique de Montréal and the CHUM on March 14 in the scientific journal Applied Physics Letters.

Patent applications have been submitted for this method of real-time monitoring and guidance of devices for minimally invasive surgeries using MRI. Commercialization of the technology has been entrusted to Gestion Univalor, LP.

About École Polytechnique

Founded in 1873, École Polytechnique de Montréal is one of Canada's leading engineering institutions in terms of both teaching and research. It is the largest engineering school in Québec as far as its student population and the scope of its research activities are concerned. École Polytechnique provides instruction in 11 engineering specialties and is responsible for more than one-quarter of university research in engineering in Québec. The school has 230 professors and nearly 6,000 students. Its operating budget is $85 million, in addition to a $68-million research and infrastructure fund, which includes grants and contracts worth $38 million. Polytechnique is affiliated with Université de Montréal.

Annie Touchette | EurekAlert!
Further information:
http://www.polymtl.ca

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>