Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World First In Medical Robotics

20.03.2007
Fantastic Voyage: from science fiction to reality? École Polytechnique de Montréal researchers successfully control and navigate a wireless device inside an artery using a clinical magnetic resonance imaging (MRI) system, paving the way for novel, minimally invasive and more accurate surgeries

Some 40 years after the release of the classic science fiction movie Fantastic Voyage, researchers in the NanoRobotics Laboratory of École Polytechnique de Montréal's Department of Computer Engineering and Institute of Biomedical Engineering have achieved a major technological breakthrough in the field of medical robotics. They have succeeded for the first time in guiding, in vivo and via computer control, a microdevice inside an artery, at a speed of 10 centimetres a second.

Under the direction of Professor Sylvain Martel, holder of the Canada Research Chair in Micro/Nanosystem Development, Construction and Validation, and in collaboration with researchers at the Centre hospitalier de l'Université de Montréal (CHUM), the Polytechnique team has succeeded in injecting, propelling and controlling by means of software programs an initial prototype of an untethered device (a ferromagnetic 1.5- millimetre-diameter sphere) within the carotid artery of a living animal placed inside a clinical magnetic resonance imaging (MRI) system.

Encouraged by these results, staff at the Polytechnique NanoRobotics Laboratory are currently working to further reduce the size of the devices so that, within a few years, they can navigate inside smaller blood vessels.

"Injection and control of nanorobots inside the human body, which contains nearly 100,000 kilometres of blood vessels, is a promising avenue that could enable interventional medicine to target sites that so far have remained inaccessible using modern medical instruments such as catheters," Professor Martel explained. "In collaboration with our scientific partners, Polytechnique researchers have begun developing several types of micro- and nanodevices for novel applications, such as targeted delivery of medications to tumour sites and diagnoses using navigable bio-sensors."

The results of this scientific breakthrough were published by Professor Martel and 10 co-authors from École Polytechnique de Montréal and the CHUM on March 14 in the scientific journal Applied Physics Letters.

Patent applications have been submitted for this method of real-time monitoring and guidance of devices for minimally invasive surgeries using MRI. Commercialization of the technology has been entrusted to Gestion Univalor, LP.

About École Polytechnique

Founded in 1873, École Polytechnique de Montréal is one of Canada's leading engineering institutions in terms of both teaching and research. It is the largest engineering school in Québec as far as its student population and the scope of its research activities are concerned. École Polytechnique provides instruction in 11 engineering specialties and is responsible for more than one-quarter of university research in engineering in Québec. The school has 230 professors and nearly 6,000 students. Its operating budget is $85 million, in addition to a $68-million research and infrastructure fund, which includes grants and contracts worth $38 million. Polytechnique is affiliated with Université de Montréal.

Annie Touchette | EurekAlert!
Further information:
http://www.polymtl.ca

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>