Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World First In Medical Robotics

20.03.2007
Fantastic Voyage: from science fiction to reality? École Polytechnique de Montréal researchers successfully control and navigate a wireless device inside an artery using a clinical magnetic resonance imaging (MRI) system, paving the way for novel, minimally invasive and more accurate surgeries

Some 40 years after the release of the classic science fiction movie Fantastic Voyage, researchers in the NanoRobotics Laboratory of École Polytechnique de Montréal's Department of Computer Engineering and Institute of Biomedical Engineering have achieved a major technological breakthrough in the field of medical robotics. They have succeeded for the first time in guiding, in vivo and via computer control, a microdevice inside an artery, at a speed of 10 centimetres a second.

Under the direction of Professor Sylvain Martel, holder of the Canada Research Chair in Micro/Nanosystem Development, Construction and Validation, and in collaboration with researchers at the Centre hospitalier de l'Université de Montréal (CHUM), the Polytechnique team has succeeded in injecting, propelling and controlling by means of software programs an initial prototype of an untethered device (a ferromagnetic 1.5- millimetre-diameter sphere) within the carotid artery of a living animal placed inside a clinical magnetic resonance imaging (MRI) system.

Encouraged by these results, staff at the Polytechnique NanoRobotics Laboratory are currently working to further reduce the size of the devices so that, within a few years, they can navigate inside smaller blood vessels.

"Injection and control of nanorobots inside the human body, which contains nearly 100,000 kilometres of blood vessels, is a promising avenue that could enable interventional medicine to target sites that so far have remained inaccessible using modern medical instruments such as catheters," Professor Martel explained. "In collaboration with our scientific partners, Polytechnique researchers have begun developing several types of micro- and nanodevices for novel applications, such as targeted delivery of medications to tumour sites and diagnoses using navigable bio-sensors."

The results of this scientific breakthrough were published by Professor Martel and 10 co-authors from École Polytechnique de Montréal and the CHUM on March 14 in the scientific journal Applied Physics Letters.

Patent applications have been submitted for this method of real-time monitoring and guidance of devices for minimally invasive surgeries using MRI. Commercialization of the technology has been entrusted to Gestion Univalor, LP.

About École Polytechnique

Founded in 1873, École Polytechnique de Montréal is one of Canada's leading engineering institutions in terms of both teaching and research. It is the largest engineering school in Québec as far as its student population and the scope of its research activities are concerned. École Polytechnique provides instruction in 11 engineering specialties and is responsible for more than one-quarter of university research in engineering in Québec. The school has 230 professors and nearly 6,000 students. Its operating budget is $85 million, in addition to a $68-million research and infrastructure fund, which includes grants and contracts worth $38 million. Polytechnique is affiliated with Université de Montréal.

Annie Touchette | EurekAlert!
Further information:
http://www.polymtl.ca

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>