Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

THEMIS Weighs In On The Northern Lights

16.03.2007
Berkeley Lab Detectors Gather Data on Earth's Auroras, Radiation Belts, and the Solar Wind
Instruments known as solid-state telescopes (SSTs), built with detectors fabricated at Lawrence Berkeley National Laboratory and carried aboard the recently launched THEMIS mission, have delivered their first data on how charged particles in the solar wind interact with Earth's magnetic field to shape the planet's magnetosphere.

THEMIS's principal investigator is Vassilis Angelopoulos of the University of California at Berkeley's Space Sciences Laboratory (SSL), which is leading the mission for NASA and which designed and built the instruments in collaboration with agencies in Germany, France, and Austria.

The first NASA mission comprised of five different coordinated spacecraft, all five THEMIS spacecraft were launched from Cape Canaveral together aboard a single rocket on February 17, 2007. Eventually the five will study the mysterious eruptions in Earth's Northern and Southern Lights known as "substorms," but first they must achieve widely separated orbits, a process that will take several months.

An acronym for Time History of Events and Macroscopic Interactions during Substorms, THEMIS will obtain the evidence needed to solve what principal investigator Angelopoulos calls "a nagging question that the field has to resolve" — namely, competing theories about where auroral substorms originate in the magnetosphere.

As one of several instrument systems carried aboard the five THEMIS spacecraft, the solid-state telescopes will gather some of the most important evidence. The SSTs' job is to measure the energy distribution of electrons and ions (charged atoms and atomic nuclei) arriving at each spacecraft from different parts of the sky. To do this, the SSTs use custom-built silicon diode detectors made in Berkeley Lab's Microsystems Laboratory by Craig Tindall, Steve Holland, and Nick Palaio of the Engineering Division.

These large-area detectors have very thin contacts, only a few hundred angstroms thick. This allows them to detect electrons and ions with energies much lower than those that can be detected with standard silicon detectors, giving the SSTs the ability to cover a wide energy range, from high to low. But because the contacts are so thin, making a sufficient quantity of the large detectors posed a significant challenge.

Says Tindall, "Berkeley Lab's Microsystems Laboratory provided advanced equipment and processes in an ultraclean environment, enabling the fabrication of these detectors with high yield."

Using the finished detectors, UC Berkeley's Davin Larson directed assembly of the solid-state telescopes at SSL. Each SST is based on four detectors; two SSTs mounted side by side and pointing in opposite directions form a unit, and two units are mounted on each spacecraft, for a total of 80 silicon diode detectors flown aboard the five spacecraft.

Berkeley Lab has a long history of creating and fabricating innovative detectors, beginning with detectors for high-energy particle experiments in accelerators and recently including detectors for space missions like STEREO, NASA's twin Solar Terrestrial Relations Observatories, launched in 2006; the Spitzer Space Telescope, launched in 2004; and RHESSI, the Ramaty High Energy Solar Spectroscopic Imager, launched in 2002.

Tindall and Palaio made detectors for the IMPACT instrument suite aboard STEREO using the same process as the THEMIS detectors; these are currently returning data on energetic solar particles.

THEMIS is managed by NASA's Goddard Spaceflight Center Explorers office. For more information about auroras, the magnetosphere, and the scientific and technical aspects of THEMIS, visit SSL's site at http://themis.ssl.berkeley.edu/ and NASA's site at http://www.nasa.gov/mission_pages/themis/main/index.html.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at http://www.lbl.gov.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>