Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UGA research may lead to reassessment of some foundations of statistical mechanics

There are probably more molecules in your den than there are stars in the universe. When studying numbers so vast, researchers had to find a way to make large-scale predictions based on the study of microscopic properties. That field of inquiry is called statistical mechanics, and it is an important tool in explaining how the world works.

A new research paper, just published in the online version of the journal Physical Review Letters by M. Howard Lee, Regents Professor of Physics at the University of Georgia, however, may lead to a reassessment of some foundations of statistical mechanics, according to its author.

“Reassessing old problems with new tools is always a challenge,” said Lee. “But it is a challenge that has been rewarding.”

At the heart of Lee’s new research is the work of two giants of physics and mathematics, Ludwig Boltzmann and George David Birkhoff and a hypothesis one proposed and the other proved. It is the story of a difficult and intricate theorem that remains important in using microscopic pictures to understand large-scale systems.

Boltzmann was a 19th century Austrian physicist and one of the founders of statistical mechanics. He proposed what came to be called the Ergodic Hypothesis: A time average is equal to an ensemble average. This elegant idea allowed scientists to compute accurate thermodynamic functions without having to examine how particles act and change over time.

It became one of the foundations of statistical mechanics, but actually proving Bolzmann’s hypothesis turned out to be a classically intractable problem, until Birkhoff, an American mathematician, came along. But while his proof seemed to work in the field of mathematics, it never satisfied physicists, who considered it far too abstract.

Lee’s paper in Physical Review Letters proposes a new solution to the problem that has perplexed researchers since Birkhoff’s solution some 70 years ago.

“Proving Bolzmann’s hypothesis is extremely difficult, because one must first solve the equation of motion, which is a daunting task in itself,” said Lee. “As a result, most people have come to accept the hypothesis despite occasional evidence to the contrary.”

In 2001, Lee laid the groundwork for testing the hypothesis by using a technique he had developed to help solve another problem in 1982 when he found an exact, general and practical solution to one of the most important problems in statistical physics. The problem was how to solve the so-called "Heisenberg equation of motion," which yields the response of a system to an external probe

While another scientist solved the problem first, Lee went about it in different way, one that provided for the first time a theory from which one could actually calculate. Lee’s work on that problem has had a tremendous impact on statistical mechanics, as evidenced by nearly 600 citations since its publication 25 years ago.

When a colleague suggested that Lee use this mathematical tool, which he calls an “ergometer,” to probe Birkhoff’s solution to Bolzmann’s hypothesis, a light bulb went off. This might be a way to take Birkhoff from mathematics into the very different realm of physics.

“To make sense of Birkhoff’s Theorem, let’s say that being Ergodic means being able to walk on land,” said Lee. “In this analogy, Birkhoff says that there is an island, but he doesn’t say how large or small the island is. It could be as small as an islet or as large as a continent. To physicists, it’s critical to know how large that island is.”

Lee then used his ergometer to help determine the boundaries and therefore the size of the “island.” In the Physical Review Letters paper, Lee examined where Birkhoff’s Theorem is violated and extracted from it the underlying physical basis for it.

“Establishing this connection puts Birkhoff’s Theorem on a physical terrain, enabling us to begin the mapping process of that island, and this paper is the start of that work,” said Lee.

It will also allow physicists to understand how widely valid Boltzmann’s Hypothesis actually is and help researchers in assessing the entire foundations of statistical mechanics.

M. Howard Lee | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>