Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA research may lead to reassessment of some foundations of statistical mechanics

15.03.2007
There are probably more molecules in your den than there are stars in the universe. When studying numbers so vast, researchers had to find a way to make large-scale predictions based on the study of microscopic properties. That field of inquiry is called statistical mechanics, and it is an important tool in explaining how the world works.

A new research paper, just published in the online version of the journal Physical Review Letters by M. Howard Lee, Regents Professor of Physics at the University of Georgia, however, may lead to a reassessment of some foundations of statistical mechanics, according to its author.

“Reassessing old problems with new tools is always a challenge,” said Lee. “But it is a challenge that has been rewarding.”

At the heart of Lee’s new research is the work of two giants of physics and mathematics, Ludwig Boltzmann and George David Birkhoff and a hypothesis one proposed and the other proved. It is the story of a difficult and intricate theorem that remains important in using microscopic pictures to understand large-scale systems.

Boltzmann was a 19th century Austrian physicist and one of the founders of statistical mechanics. He proposed what came to be called the Ergodic Hypothesis: A time average is equal to an ensemble average. This elegant idea allowed scientists to compute accurate thermodynamic functions without having to examine how particles act and change over time.

It became one of the foundations of statistical mechanics, but actually proving Bolzmann’s hypothesis turned out to be a classically intractable problem, until Birkhoff, an American mathematician, came along. But while his proof seemed to work in the field of mathematics, it never satisfied physicists, who considered it far too abstract.

Lee’s paper in Physical Review Letters proposes a new solution to the problem that has perplexed researchers since Birkhoff’s solution some 70 years ago.

“Proving Bolzmann’s hypothesis is extremely difficult, because one must first solve the equation of motion, which is a daunting task in itself,” said Lee. “As a result, most people have come to accept the hypothesis despite occasional evidence to the contrary.”

In 2001, Lee laid the groundwork for testing the hypothesis by using a technique he had developed to help solve another problem in 1982 when he found an exact, general and practical solution to one of the most important problems in statistical physics. The problem was how to solve the so-called "Heisenberg equation of motion," which yields the response of a system to an external probe

While another scientist solved the problem first, Lee went about it in different way, one that provided for the first time a theory from which one could actually calculate. Lee’s work on that problem has had a tremendous impact on statistical mechanics, as evidenced by nearly 600 citations since its publication 25 years ago.

When a colleague suggested that Lee use this mathematical tool, which he calls an “ergometer,” to probe Birkhoff’s solution to Bolzmann’s hypothesis, a light bulb went off. This might be a way to take Birkhoff from mathematics into the very different realm of physics.

“To make sense of Birkhoff’s Theorem, let’s say that being Ergodic means being able to walk on land,” said Lee. “In this analogy, Birkhoff says that there is an island, but he doesn’t say how large or small the island is. It could be as small as an islet or as large as a continent. To physicists, it’s critical to know how large that island is.”

Lee then used his ergometer to help determine the boundaries and therefore the size of the “island.” In the Physical Review Letters paper, Lee examined where Birkhoff’s Theorem is violated and extracted from it the underlying physical basis for it.

“Establishing this connection puts Birkhoff’s Theorem on a physical terrain, enabling us to begin the mapping process of that island, and this paper is the start of that work,” said Lee.

It will also allow physicists to understand how widely valid Boltzmann’s Hypothesis actually is and help researchers in assessing the entire foundations of statistical mechanics.

M. Howard Lee | EurekAlert!
Further information:
http://www.uga.edu
http://www.uga.edu/news/artman/publish/070307statisticalMechanics.shtml

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>