Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nespoli focuses on complex mission

15.03.2007
Later this year ESA astronaut Paolo Nespoli will serve as Mission Specialist on the STS-120 mission to the International Space Station. Together with the rest of the Shuttle crew, Nespoli is training intensively ahead of this complex ISS assembly mission.

For the 11-day mission, Nespoli joins six NASA astronauts on board Space Shuttle Atlantis. His flight opportunity arises from the Memorandum of Understanding between the Italian space agency, ASI, and NASA for the supply to NASA of three pressurised Multi-Purpose Logistic Modules (MPLM).

As well as exchanging a member of the Station's permanent crew, and the challenging operation of repositioning a set of solar arrays, the STS-120 crew is responsible for the safe delivery of the Node 2 connecting module - an important step in the continued construction of the International Space Station.

The arrival of the cylindrical Node 2 module, which will be attached to the end of US Destiny laboratory, paves the way for the addition of the European Columbus laboratory and the Japanese Kibo laboratory later in the year.

The crew started mission specific training for this complex assignment in August last year. "We train together for some tasks, such as the rendezvous with the Space Station and operating the robotic arms during the spacewalks. I am also doing a lot of training with the simulators to be able to do my tasks according to the required standards," explains Nespoli. "The training is becoming more and more demanding. I normally start at 7 in the morning and finish at 7 or 8 o'clock in the evening. It's fairly intense!"

Besides carrying out a joint ESA/ASI programme of scientific experiments, PR and educational activities, in his role as Mission Specialist, Nespoli will help with maintaining and handling the on board systems of the spacecraft.

During the inspection of the Shuttle's heat resistant tiles following the launch, he will be at the controls of the robotic arm. He will also be part of the team to perform the approach and docking with the Space Station.

Nespoli will coordinate activities from inside the Shuttle during three spacewalks – he will direct the spacewalkers, coordinating both with the ground and with the Shuttle and Station robotic arm operators. As the mission draws to a close, Nespoli will take part in Shuttle undocking activities, and for the re-entry he will be sat in the Flight Deck as Mission Specialist 1.

Nespoli's mission, which will be jointly managed by ESA and ASI, will be his first visit to space. A member of the European Astronaut Corps since 1998, he naturally looks forward to finally fulfilling a dream. "I will reach a goal I have been working on for many many years, so I am looking forward to experiencing this personally," says Nespoli.

"I am also looking to contribute to the crew and to the mission. To essentially complete the tasks that have been assigned to us. I feel the responsibility of bringing Node 2 into orbit. This is a complex task and I will try to concentrate to be at my best."

Paolo Nespoli presented his mission at a press conference earlier today at the Italian space agency, ASI, premises in Rome, Italy. STS-120 is scheduled for launch from NASA's Kennedy Space Center, Florida, in the autumn.

Node 2 was developed for NASA under an ESA contract with European industry, with Alcatel-Alenia Space as the prime contractor. Responsibility for Node 2 development was assigned to the Italian space agency, ASI.

Franca Morgia | alfa
Further information:
http://www.esa.int/esaHS/SEMUKDQ08ZE_index_0.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>