Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nespoli focuses on complex mission

15.03.2007
Later this year ESA astronaut Paolo Nespoli will serve as Mission Specialist on the STS-120 mission to the International Space Station. Together with the rest of the Shuttle crew, Nespoli is training intensively ahead of this complex ISS assembly mission.

For the 11-day mission, Nespoli joins six NASA astronauts on board Space Shuttle Atlantis. His flight opportunity arises from the Memorandum of Understanding between the Italian space agency, ASI, and NASA for the supply to NASA of three pressurised Multi-Purpose Logistic Modules (MPLM).

As well as exchanging a member of the Station's permanent crew, and the challenging operation of repositioning a set of solar arrays, the STS-120 crew is responsible for the safe delivery of the Node 2 connecting module - an important step in the continued construction of the International Space Station.

The arrival of the cylindrical Node 2 module, which will be attached to the end of US Destiny laboratory, paves the way for the addition of the European Columbus laboratory and the Japanese Kibo laboratory later in the year.

The crew started mission specific training for this complex assignment in August last year. "We train together for some tasks, such as the rendezvous with the Space Station and operating the robotic arms during the spacewalks. I am also doing a lot of training with the simulators to be able to do my tasks according to the required standards," explains Nespoli. "The training is becoming more and more demanding. I normally start at 7 in the morning and finish at 7 or 8 o'clock in the evening. It's fairly intense!"

Besides carrying out a joint ESA/ASI programme of scientific experiments, PR and educational activities, in his role as Mission Specialist, Nespoli will help with maintaining and handling the on board systems of the spacecraft.

During the inspection of the Shuttle's heat resistant tiles following the launch, he will be at the controls of the robotic arm. He will also be part of the team to perform the approach and docking with the Space Station.

Nespoli will coordinate activities from inside the Shuttle during three spacewalks – he will direct the spacewalkers, coordinating both with the ground and with the Shuttle and Station robotic arm operators. As the mission draws to a close, Nespoli will take part in Shuttle undocking activities, and for the re-entry he will be sat in the Flight Deck as Mission Specialist 1.

Nespoli's mission, which will be jointly managed by ESA and ASI, will be his first visit to space. A member of the European Astronaut Corps since 1998, he naturally looks forward to finally fulfilling a dream. "I will reach a goal I have been working on for many many years, so I am looking forward to experiencing this personally," says Nespoli.

"I am also looking to contribute to the crew and to the mission. To essentially complete the tasks that have been assigned to us. I feel the responsibility of bringing Node 2 into orbit. This is a complex task and I will try to concentrate to be at my best."

Paolo Nespoli presented his mission at a press conference earlier today at the Italian space agency, ASI, premises in Rome, Italy. STS-120 is scheduled for launch from NASA's Kennedy Space Center, Florida, in the autumn.

Node 2 was developed for NASA under an ESA contract with European industry, with Alcatel-Alenia Space as the prime contractor. Responsibility for Node 2 development was assigned to the Italian space agency, ASI.

Franca Morgia | alfa
Further information:
http://www.esa.int/esaHS/SEMUKDQ08ZE_index_0.html

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>