Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New form of matter-antimatter transformation observed for first time

14.03.2007
Whilst science fiction toys effortlessly with anti-matter, in reality it can be very hard to produce, so researchers around the world are celebrating a new break through in this area.

For the first time, scientists using the BaBar experiment at the Stanford Linear Accelerator Center (SLAC) have observed the transition of one type of particle, the neutral D-meson, into its antimatter particle – a process known as ‘mixing’. The new observation will be used as a test of the Standard Model, the current theory that best describes the entire universe’s luminous matter and its associated forces.

UK BaBar spokesman, Fergus Wilson of the Rutherford Appleton Lab said "D-meson mixing was first predicted over three decades ago but it is such an elusive phenomenon that it has taken until today to see it. The observation of D-meson mixing is yet another outstanding achievement for the BaBar experiment. The BaBar collaboration continues to make ground-breaking measurements that challenge our understanding of how elementary particles behave."

"Achieving the large number of collisions needed to observe D-meson mixing is a testament to the tremendous capabilities of the laboratory's accelerator team," said SLAC Director Jonathan Dorfan. "The discovery of this long-sought-after process is yet another step along the way to a better understanding of the Standard Model and the physics beyond."

The PEP-II accelerator complex at SLAC, also known as the B Factory, allows the BaBar collaboration to study not only B-mesons but also several other types of particles including the D-meson. Mesons, of which there are about 140 types, are made up of fundamental particles called quarks, which can be produced when particles collide at high energy. A flurry of particles in a variety of combinations is produced when electrons and positrons smash together at high energy in the PEP-II collider facility. One of the most elusive results of this flurry is the transformation of one particle into its anti-particle in a process physicists call "mixing.” Neutral K-mesons, observed more than 50 years ago, were the first elementary particles to demonstrate this phenomenon. About 20 years ago, scientists observed mixing with the B-meson. Now, for the first time, the BaBar experimenters have seen the D-meson transform into its anti-particle, and vice versa.

"This is a very exciting moment for us, having found the missing puzzle piece for particle-antiparticle mixing," said BaBar Spokesman Hassan Jawahery, a physics professor at the University of Maryland.

D-meson mixing is remarkably rare. Of the BaBar experiment’s several billion recorded collisions, this study focuses on about a million events containing a D-meson decay that are candidates for this effect. The experimenters found about 500 events in which a D-meson had changed into an anti-D-meson before decaying.

By observing the rare process of D-meson mixing, BaBar collaborators can test the intricacies of the Standard Model. To switch from matter to antimatter, the D-meson must interact with “virtual particles," which through quantum fluctuations pop into existence for a brief moment before disappearing again. Their momentary existence is enough to spark the D-meson’s transformation into an anti-D-meson. Although the BaBar detector cannot directly see these virtual particles, researchers can identify their effect by measuring the frequency of the D-meson to anti-D-meson transformation. Knowing that quantity will help determine whether the Standard Model is sufficient or whether it must be expanded to incorporate new physics processes.

“It’s too soon to know if the Standard Model is capable of fully accounting for this effect, or if new physics is required to explain the observation,” said Jawahery. “But in the coming weeks and months we are likely to see an abundance of new theoretical work to interpret what we’ve observed.”

Some 600 scientists and engineers from 77 institutions in Canada, France, Germany, Italy, the Netherlands, Norway, Russia, Spain, the United Kingdom and the United States work on BaBar. SLAC is funded by the US Department of Energy’s Office of Science. UK involvement is funded by the Particle Physics and Astronomy Research Council (PPARC)

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>