Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New form of matter-antimatter transformation observed for first time

14.03.2007
Whilst science fiction toys effortlessly with anti-matter, in reality it can be very hard to produce, so researchers around the world are celebrating a new break through in this area.

For the first time, scientists using the BaBar experiment at the Stanford Linear Accelerator Center (SLAC) have observed the transition of one type of particle, the neutral D-meson, into its antimatter particle – a process known as ‘mixing’. The new observation will be used as a test of the Standard Model, the current theory that best describes the entire universe’s luminous matter and its associated forces.

UK BaBar spokesman, Fergus Wilson of the Rutherford Appleton Lab said "D-meson mixing was first predicted over three decades ago but it is such an elusive phenomenon that it has taken until today to see it. The observation of D-meson mixing is yet another outstanding achievement for the BaBar experiment. The BaBar collaboration continues to make ground-breaking measurements that challenge our understanding of how elementary particles behave."

"Achieving the large number of collisions needed to observe D-meson mixing is a testament to the tremendous capabilities of the laboratory's accelerator team," said SLAC Director Jonathan Dorfan. "The discovery of this long-sought-after process is yet another step along the way to a better understanding of the Standard Model and the physics beyond."

The PEP-II accelerator complex at SLAC, also known as the B Factory, allows the BaBar collaboration to study not only B-mesons but also several other types of particles including the D-meson. Mesons, of which there are about 140 types, are made up of fundamental particles called quarks, which can be produced when particles collide at high energy. A flurry of particles in a variety of combinations is produced when electrons and positrons smash together at high energy in the PEP-II collider facility. One of the most elusive results of this flurry is the transformation of one particle into its anti-particle in a process physicists call "mixing.” Neutral K-mesons, observed more than 50 years ago, were the first elementary particles to demonstrate this phenomenon. About 20 years ago, scientists observed mixing with the B-meson. Now, for the first time, the BaBar experimenters have seen the D-meson transform into its anti-particle, and vice versa.

"This is a very exciting moment for us, having found the missing puzzle piece for particle-antiparticle mixing," said BaBar Spokesman Hassan Jawahery, a physics professor at the University of Maryland.

D-meson mixing is remarkably rare. Of the BaBar experiment’s several billion recorded collisions, this study focuses on about a million events containing a D-meson decay that are candidates for this effect. The experimenters found about 500 events in which a D-meson had changed into an anti-D-meson before decaying.

By observing the rare process of D-meson mixing, BaBar collaborators can test the intricacies of the Standard Model. To switch from matter to antimatter, the D-meson must interact with “virtual particles," which through quantum fluctuations pop into existence for a brief moment before disappearing again. Their momentary existence is enough to spark the D-meson’s transformation into an anti-D-meson. Although the BaBar detector cannot directly see these virtual particles, researchers can identify their effect by measuring the frequency of the D-meson to anti-D-meson transformation. Knowing that quantity will help determine whether the Standard Model is sufficient or whether it must be expanded to incorporate new physics processes.

“It’s too soon to know if the Standard Model is capable of fully accounting for this effect, or if new physics is required to explain the observation,” said Jawahery. “But in the coming weeks and months we are likely to see an abundance of new theoretical work to interpret what we’ve observed.”

Some 600 scientists and engineers from 77 institutions in Canada, France, Germany, Italy, the Netherlands, Norway, Russia, Spain, the United Kingdom and the United States work on BaBar. SLAC is funded by the US Department of Energy’s Office of Science. UK involvement is funded by the Particle Physics and Astronomy Research Council (PPARC)

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>