Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creation of a magnetic field in a turbulent fluid

13.03.2007
Understanding the origin and behavior of the magnetic fields of planets and stars is the goal of research being carried out by many teams from all over the world. The VKS1 collaboration (CEA2, CNRS3,4, Ecole normale supérieure in Lyon3, Ecole normale supérieure in Paris4) has succeeded in creating in the laboratory a magnetic field in a highly turbulent flow of liquid sodium.

Although the extreme conditions specific to astrophysical and geophysical environments cannot all be reproduced in the laboratory, the magnetic field observed shows remarkable similarities with magnetic fields observed in the cosmos. The findings represent a significant advance in the understanding of the mechanisms at work in the formation of natural magnetic fields. They are published in Physical Review Letters dated 26 January 2007.

Most of the astrophysical objects which surround us (planets, stars and galaxies) have a magnetic field, whose origin is poorly understood. Such magnetic fields can play a major role in the evolution of various structures throughout the Universe. The Earth's magnetic field, which is very probably caused by the movement of liquid iron in the core, not only makes compass needles point north, but also protects us from the harmful effects of cosmic rays and the solar wind.

As early as 1919, Larmor put forward the hypothesis that the Sun's magnetic field is generated by a "dynamo" effect, in other words by the movement of a fluid that conducts electricity. Because of their highly chaotic (turbulent) nature, the analysis of geophysical and astrophysical flows is beyond the current capacities of numerical simulations, and, until now, has thwarted all attempts at a theoretical approach. It is only through experimental work that it is possible to reproduce the dynamo phenomenon with parameters that are similar to those that occur naturally. Following experiments carried out in 2000 by teams in Riga and Karlsruhe, the challenge facing the physicists was to show that the fully turbulent motion of a conducting liquid could spontaneously generate a magnetic field.

1 Von Karman (the physicist after whom the flow that was created was named), Sodium (the liquid used in the experiments)

2 Department of condensed state physics at CEA, team led by François Daviaud

3 Physics laboratory of the Ecole normale supérieure at Lyon, (CNRS, ENS Lyon), team led by Jean-François Pinton

4 Laboratory for statistical physics at the Ecole normale supérieure, (CNRS, ENS Paris, Universités Paris VI and Paris VII), team led by Stephan Fauve

5 The VKS experiment was carried out at CEA/Cadarache, at the Department of nuclear technology, Office of nuclear energy

Since 1998, the VKS collaboration has been studying a highly turbulent flow produced by the movement of two turbines revolving in opposite directions in a cylinder filled with liquid sodium5. Liquid sodium is an excellent conductor of electricity, while having a density similar to that of water, unlike many other metals which are much denser. In September 2006, the VKS2 experiment showed that, when the turbines revolve faster than a critical speed (1020 rpm), the flow spontaneously generates a magnetic field. This is the first time that such results have been observed in a highly turbulent medium.

The result proves that fluid dynamos continue to operate in the presence of strong turbulence of the kinds that occur under natural conditions. The achievement of the dynamo experiment under laboratory conditions opens up many new prospects. In particular, it will make it possible to study the energy balance involved in the production of a magnetic field as well as its dynamics. It may therefore be possible to understand the origin of the pseudoperiodic oscillations in the solar cycle or the irregular reversals of the Earth's magnetic field.

Monica McCarthy | EurekAlert!
Further information:
http://www.cnrs.fr

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>