Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Creation of a magnetic field in a turbulent fluid

Understanding the origin and behavior of the magnetic fields of planets and stars is the goal of research being carried out by many teams from all over the world. The VKS1 collaboration (CEA2, CNRS3,4, Ecole normale supérieure in Lyon3, Ecole normale supérieure in Paris4) has succeeded in creating in the laboratory a magnetic field in a highly turbulent flow of liquid sodium.

Although the extreme conditions specific to astrophysical and geophysical environments cannot all be reproduced in the laboratory, the magnetic field observed shows remarkable similarities with magnetic fields observed in the cosmos. The findings represent a significant advance in the understanding of the mechanisms at work in the formation of natural magnetic fields. They are published in Physical Review Letters dated 26 January 2007.

Most of the astrophysical objects which surround us (planets, stars and galaxies) have a magnetic field, whose origin is poorly understood. Such magnetic fields can play a major role in the evolution of various structures throughout the Universe. The Earth's magnetic field, which is very probably caused by the movement of liquid iron in the core, not only makes compass needles point north, but also protects us from the harmful effects of cosmic rays and the solar wind.

As early as 1919, Larmor put forward the hypothesis that the Sun's magnetic field is generated by a "dynamo" effect, in other words by the movement of a fluid that conducts electricity. Because of their highly chaotic (turbulent) nature, the analysis of geophysical and astrophysical flows is beyond the current capacities of numerical simulations, and, until now, has thwarted all attempts at a theoretical approach. It is only through experimental work that it is possible to reproduce the dynamo phenomenon with parameters that are similar to those that occur naturally. Following experiments carried out in 2000 by teams in Riga and Karlsruhe, the challenge facing the physicists was to show that the fully turbulent motion of a conducting liquid could spontaneously generate a magnetic field.

1 Von Karman (the physicist after whom the flow that was created was named), Sodium (the liquid used in the experiments)

2 Department of condensed state physics at CEA, team led by François Daviaud

3 Physics laboratory of the Ecole normale supérieure at Lyon, (CNRS, ENS Lyon), team led by Jean-François Pinton

4 Laboratory for statistical physics at the Ecole normale supérieure, (CNRS, ENS Paris, Universités Paris VI and Paris VII), team led by Stephan Fauve

5 The VKS experiment was carried out at CEA/Cadarache, at the Department of nuclear technology, Office of nuclear energy

Since 1998, the VKS collaboration has been studying a highly turbulent flow produced by the movement of two turbines revolving in opposite directions in a cylinder filled with liquid sodium5. Liquid sodium is an excellent conductor of electricity, while having a density similar to that of water, unlike many other metals which are much denser. In September 2006, the VKS2 experiment showed that, when the turbines revolve faster than a critical speed (1020 rpm), the flow spontaneously generates a magnetic field. This is the first time that such results have been observed in a highly turbulent medium.

The result proves that fluid dynamos continue to operate in the presence of strong turbulence of the kinds that occur under natural conditions. The achievement of the dynamo experiment under laboratory conditions opens up many new prospects. In particular, it will make it possible to study the energy balance involved in the production of a magnetic field as well as its dynamics. It may therefore be possible to understand the origin of the pseudoperiodic oscillations in the solar cycle or the irregular reversals of the Earth's magnetic field.

Monica McCarthy | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>