Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluster opens a new window on ‘magnetic reconnection’ in the near-Earth space

13.03.2007
Plasma physicists have made an unprecedented measurement in their study of the Earth's magnetic field. Thanks to ESA's Cluster satellites they detected an electric field thought to be a key element in the process of 'magnetic reconnection'.

Thanks to these measurements, obtained by the eight PEACE electron sensors onboard the four spacecraft, scientists now have their first insight into magnetic reconnection's detailed behaviour.

Magnetic reconnection is a process that can occur almost anywhere that a magnetic field is found. In a reconnection event, the magnetic field lines are squeezed together somehow and spontaneously reconfigure themselves. This releases energy. When it occurs near the surface of the Sun, such an event powers giant solar flares that can release thousands of millions of tonnes of electrically charged particles into space.

The Earth's magnetic field creates a buffer zone, the magnetosphere, between our planet's atmosphere and the particles released during these eruptions. The Sun also releases a steadier flow of charged particles called the solar wind. On the large-scale, any heading this way buffet the magnetosphere, and are deflected by it. Plasma physicists describe this behaviour with a theory called 'magneto-hydrodynamics' (MHD).

On smaller scales, however, the picture becomes rather more complicated. The particles can actually flow across the magnetic field lines.This makes the mathematics of the behaviour more difficult. First to misbehave are the ions (positively charged particles). These break away from simple MHD on scales of less than a few hundred kilometres. On even smaller scales, less than 10 kilometres, the electrons (negatively charged particles) begin playing by other rules, too.

The new Cluster measurements reveal the electric field on the scale of a few hundred kilometres. "This is the first ever measurement of this term," says Paul Henderson, from University College London's Mullard Space Science Laboratory, UK, who led the investigation.

On 17 August 2003, Cluster was flying high above the night-time hemisphere of the Earth with an average separation of 200 kilometres between spacecraft. Data from several instruments shows that at 18:00 CET, a reconnection event took place and swept across the spacecraft.

Using data from Cluster's Plasma Electron and Current Experiment (PEACE) Henderson and collaborators calculated the pressure of electrons at each spacecraft and then calculated the difference between them and the variation with time. Using these quantities they calculated the electric field present near a reconnection site.

"This is an impossible calculation to make without four spacecraft," says Henderson. Now that the scientists can calculate the electric field in such a way, they have a new window into the process of magnetic reconnection.

Magnetic reconnection within Earth's magnetosphere regularly takes place on the night-time side of our planet, where the flow of the solar wind stretches out the magnetic field into a long tail. When the field reconnects in this region, it triggers jets of energetic particles that can cause auroral lights but can also damage satellites.

This new Cluster result takes scientists a step closer to seeing the precise details of magnetic reconnection. "When you think that the magnetosphere stretches over a million kilometres through space, we are actually looking at a minuscule part of it," says Henderson.

And that's exactly what plasma scientists want – the microphysics.

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMZN9Q11ZE_index_0.html

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>