Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gamma-Ray Burst Challenges Theory

12.03.2007
In a series of landmark observations gathered over a period of four months, NASA's Swift satellite has challenged some of astronomers' fundamental ideas about gamma-ray bursts (GRBs), which are among the most extreme events in our universe. GRBs are the explosive deaths of very massive stars, some of which eject jets that can release in a matter of seconds the same amount of energy that the sun will radiate over its 10-billion-year lifetime.

When GRB jets slam into nearby interstellar gas, the resulting collision generates an intense afterglow that can radiate brightly in X-rays and other wavelengths for several weeks. Swift, however, has monitored a GRB whose afterglow remained visible for more than 125 days in the satellite's X-ray Telescope (XRT).

Swift's Burst Alert Telescope (BAT) detected the GRB in the constellation Pictor on July 29, 2006. The XRT picked up GRB 060729 (named for its date of detection) 124 seconds after BAT's detection. Normally, the XRT monitors an afterglow for a week or two until it fades to near invisibility. But for the July 29 burst, the afterglow started off so bright and faded so slowly that the XRT could regularly monitor it for months, and the instrument was still able to detect it in late November. The burst's distance from Earth (it was much closer than many GRBs) was also a factor in XRT's ability to monitor the afterglow for such an extended period.

The slow fading of the X-ray afterglow has several important ramifications for our understanding of GRBs. "It requires a larger energy injection than what we normally see in bursts, and may require continuous energy input from the central engine," says astronomer Dirk Grupe of Penn State University, University Park, Penn., and lead author of an international team that reports these results in an upcoming issue of the Astrophysical Journal.

One possibility is that the GRB's central engine was a magnetar — a neutron star with an ultra-powerful magnetic field. The magnetar's magnetic field acts like a brake, forcing the star's rotation rate to spin-down rapidly. The energy of this spin-down can be converted into magnetic energy that is continuously injected into the initial blast wave that triggered the GRB. Calculations by paper coauthor Xiang-Yu Wang of Penn State show that this energy could power the observed X-ray afterglow and keep it shining for months.

A burst observed on January 10, 2007, also suggests that magnetars power some GRBs. GRB 070110's X-ray afterglow remained nearly constant in brightness for 5 hours, then faded rapidly more than tenfold. In another paper submitted to the Astrophysical Journal, an international group led by Eleonora Troja of the INAF—IASF of Palermo, Italy, proposes that a magnetar best explains these observations.

"People have thought for a long time that GRBs are black holes being born, but scientists are now thinking of other possibilities," says Swift principal investigator Neil Gehrels of NASA's Goddard Space Flight Center in Greenbelt, Md., a co-author on both studies.

Another surprising result from GRB 060729 is that the X-ray afterglow displayed no sharp decrease in brightness over the 125-day period that it was detected by the XRT. Using widely accepted theory, Grupe and his colleagues conclude that the angle of the GRB's jet must have been at least 28 degrees wide. In contrast, most GRB jets are thought to have very narrow opening angles of only about 5 degrees. "The much wider opening angle seen in GRB 060729 suggests a much larger energy release than we typically see in GRBs," says Grupe.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2007/gammaburst_challenge.html

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>