Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finnish satellite testing system to ESA

09.03.2007
Finnish technology helps uncover the secrets of the universe

VTT Technical Research Centre of Finland has designed and constructed a satellite testing system called > '> RF Suitcase> '> for the Herschel / Planck mission of the European Space Agency (ESA). The purpose of the RF (Radio Frequency) Suitcase is to demonstrate the RF compatibility between spacecraft and ground stations prior to launch and to test the uplink and downlink functional and performance characteristics.

Among others, the values of several tens of configuration parameters for the ground stations are determined, such that each ground station can immediately communicate with the two satellites, once they are released from the launcher. The RF Suitcase also simulates the basic characteristics of the telecommand and telemetry data of the spacecraft and thus for a ground-station operator it will seem like he or she would be communicating with a real satellite.

VTT is commissioned by the French company Alcatel Alenia Space to design and construct this satellite testing system for Herschel and Planck satellites to be delivered to ESA.

The RF parts of the RF Suitcase operating in X-band are engineering models that are similar to actual flight hardware. A set of programmable RF attenuators are used to simulate the propagation losses between the spacecraft and ground stations over a distance of about 1.5 million km. These RF parts together with Telecommand and Telemetry Simulator are integrated into a single transportable cabinet. Furthermore, the cabinet includes a user-friendly control and monitoring subsystem that enables local and remote operation of the RF suitcase.

The satellite testing system is traditionally called RF Suitcase, because it should be able to travel to test-locations, where it is too risky or too expensive to ship a real satellite. The unit, which is approximately 175 cm high and weight over 200 kg, has wheels to make it easy to move. The unit was transported to Turin in a specially constructed transportation container for first tests in spring 2006.

The system was then delivered to ESA for a test campaign at the satellite control centre (ESOC) in Darmstadt, Germany. The final tests at Herschel-frequency are foreseen in summer 2007. Prior to the launch of the real satellites, which is scheduled for mid 2008, the RF Suitcase will be used in various complementary tests to demonstrate that communications between ground stations and the satellites will function.

The Herschel satellite is an astronomical telescope sensitive to infrared radiation. Its main purpose is to investigate the history of how planets, stars and galaxies formed from cold gas and dust clouds and to study how they continue to form in our own and other galaxies. Planck will look back at the dawn of time, close to the Big Bang, by observing the most ancient radiation in the Universe, known as the 'cosmic microwave background'. Together, Herschel and Planck form the largest scientific deep-space mission ever undertaken in Europe. Both satellites will be launched on board Ariane 5 from French Guiana in mid 2008.

VTT has previously delivered RF Suitcases to ESA for the Soho and Cluster satellites.

Sirpa Posti | alfa
Further information:
http://www.esa.int/esaSC/120398_index_0_m.html
http://www.vtt.fi/?lang=en

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>