Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Double-star systems cycle between big and small blasts

Certain double, or binary, star systems erupt in full-blown explosions and then flare up with smaller bursts, according to new information gathered by NASA’s Galaxy Evolution Explorer (GALEX) and analyzed by a team of astronomers, including postdoctoral researcher Mark Seibert of the Carnegie Observatories.

The data bolster a 20-year-old theory suggesting that double star systems experience both explosion types, rather than just one or the other. It also implies that the systems cycle between blast types, hiccupping every few weeks with small surges and experiencing giant outbursts every 10,000 years or so.

The discovery, appearing in the March 8 issue of the journal Nature, centers around a binary system called Z Camelopardalis (Z Cam). Astronomers have long known Z Cam to be a cataclysmic binary—a system that features a collapsed, dead star, or white dwarf, which sucks hydrogen-rich matter from its companion like a stellar vampire. The stolen material forms an orbiting disk of gas and dust around the white dwarf.

Astronomers divide cataclysmic binaries into two classes—dwarf novae, which erupt in smaller, "hiccup-like" blasts, and classical novae, which undergo huge explosions. Classical novae explosions are 10,000 to one million times brighter than those of dwarf novae, and they leave behind large shells of shocked gas.

In 2003, Seibert examined ultraviolet images collected by GALEX during its Survey of Nearby Galaxies. He noticed a never-before-seen arc and linear features surrounding Z Cam that indicated the presence of a massive shell—evidence that the dwarf nova had in fact undergone a classical nova explosion a few thousand years ago. The features had remained invisible up to this point because they cannot be easily detected at optical wavelengths. However, they are easily seen at the ultraviolet wavelengths detected by GALEX.

"You could actually see it immediately, but we had to convince ourselves that we were really seeing a nova remnant," Seibert said. "If true, it would represent the largest nova remnant yet known. But it was especially shocking to find it associated with such a diminutive dwarf nova system. Everyone was skeptical and it took a considerable amount of time and effort to be certain."

About 530 light years from Earth, Z Cam was one of the first dwarf novae ever detected. For decades, observers have watched the system hiccup with regular outbursts. It brightens about 40-fold every 3 weeks or so, when an instability causes some of the material drawn by the white dwarf to crash onto its surface. Theory holds that Z Cam and other recurring dwarf novae should eventually accumulate enough matter and pressure from their swirling disks of hydrogen to trigger gigantic classical novae explosions. But no one had found definitive evidence for this until Seibert’s discovery in 2003.

Other team members confirmed that the structures detected by GALEX were indeed parts of a massive shell of gas surrounding Z Cam. Narrowband images from Kitt Peak National Observatory near Tucson, Ariz., Palomar Observatory near San Diego, Calif., and the Wise Observatory near Mizpe Ramon, Israel, along with optical spectroscopic measurements made at the Lick Observatory near San Jose, Calif., contributed to this verification.

"The new images are the strongest evidence yet in favor of the cyclic evolution scenario of these binary stars," said lead author Mike Shara of the American Museum of Natural History in New York. "It’s gratifying to see such strong evidence for this theory finally emerge after all this time."

Caltech leads the GALEX mission and is responsible for science operations and data analysis. NASA’s Jet Propulsion Laboratory, a division of Caltech, manages the mission and built the science instrument. GALEX was developed under NASA’s Explorer Program, managed by Goddard Space Flight Center in Greenbelt, Md. Funding for the mission was provided by NASA.

In addition to the Carnegie Observatories, Caltech, and the American Museum of Natural History, co-authors on the paper represent UCLA, Columbia University, Indiana University, Wise Observatory at Tel-Aviv University, and WIYN Observatory in Tucson, Ariz. Researchers sponsored by Yonsei University in South Korea and the Centre National d’Etudes Spatiales (CNES) in France also collaborated on the mission.

The Carnegie Institution of Washington (, a private nonprofit organization, has been a pioneering force in basic scientific research since 1902. It has six research departments: the Geophysical Laboratory and the Department of Terrestrial Magnetism, both located in Washington, D.C.; The Observatories, in Pasadena, California, and Chile; the Department of Plant Biology and the Department of Global Ecology, in Stanford, California; and the Department of Embryology, in Baltimore, Maryland.

Mark Seibert | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>