Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double-star systems cycle between big and small blasts

08.03.2007
Certain double, or binary, star systems erupt in full-blown explosions and then flare up with smaller bursts, according to new information gathered by NASA’s Galaxy Evolution Explorer (GALEX) and analyzed by a team of astronomers, including postdoctoral researcher Mark Seibert of the Carnegie Observatories.

The data bolster a 20-year-old theory suggesting that double star systems experience both explosion types, rather than just one or the other. It also implies that the systems cycle between blast types, hiccupping every few weeks with small surges and experiencing giant outbursts every 10,000 years or so.

The discovery, appearing in the March 8 issue of the journal Nature, centers around a binary system called Z Camelopardalis (Z Cam). Astronomers have long known Z Cam to be a cataclysmic binary—a system that features a collapsed, dead star, or white dwarf, which sucks hydrogen-rich matter from its companion like a stellar vampire. The stolen material forms an orbiting disk of gas and dust around the white dwarf.

Astronomers divide cataclysmic binaries into two classes—dwarf novae, which erupt in smaller, "hiccup-like" blasts, and classical novae, which undergo huge explosions. Classical novae explosions are 10,000 to one million times brighter than those of dwarf novae, and they leave behind large shells of shocked gas.

In 2003, Seibert examined ultraviolet images collected by GALEX during its Survey of Nearby Galaxies. He noticed a never-before-seen arc and linear features surrounding Z Cam that indicated the presence of a massive shell—evidence that the dwarf nova had in fact undergone a classical nova explosion a few thousand years ago. The features had remained invisible up to this point because they cannot be easily detected at optical wavelengths. However, they are easily seen at the ultraviolet wavelengths detected by GALEX.

"You could actually see it immediately, but we had to convince ourselves that we were really seeing a nova remnant," Seibert said. "If true, it would represent the largest nova remnant yet known. But it was especially shocking to find it associated with such a diminutive dwarf nova system. Everyone was skeptical and it took a considerable amount of time and effort to be certain."

About 530 light years from Earth, Z Cam was one of the first dwarf novae ever detected. For decades, observers have watched the system hiccup with regular outbursts. It brightens about 40-fold every 3 weeks or so, when an instability causes some of the material drawn by the white dwarf to crash onto its surface. Theory holds that Z Cam and other recurring dwarf novae should eventually accumulate enough matter and pressure from their swirling disks of hydrogen to trigger gigantic classical novae explosions. But no one had found definitive evidence for this until Seibert’s discovery in 2003.

Other team members confirmed that the structures detected by GALEX were indeed parts of a massive shell of gas surrounding Z Cam. Narrowband images from Kitt Peak National Observatory near Tucson, Ariz., Palomar Observatory near San Diego, Calif., and the Wise Observatory near Mizpe Ramon, Israel, along with optical spectroscopic measurements made at the Lick Observatory near San Jose, Calif., contributed to this verification.

"The new images are the strongest evidence yet in favor of the cyclic evolution scenario of these binary stars," said lead author Mike Shara of the American Museum of Natural History in New York. "It’s gratifying to see such strong evidence for this theory finally emerge after all this time."

Caltech leads the GALEX mission and is responsible for science operations and data analysis. NASA’s Jet Propulsion Laboratory, a division of Caltech, manages the mission and built the science instrument. GALEX was developed under NASA’s Explorer Program, managed by Goddard Space Flight Center in Greenbelt, Md. Funding for the mission was provided by NASA.

In addition to the Carnegie Observatories, Caltech, and the American Museum of Natural History, co-authors on the paper represent UCLA, Columbia University, Indiana University, Wise Observatory at Tel-Aviv University, and WIYN Observatory in Tucson, Ariz. Researchers sponsored by Yonsei University in South Korea and the Centre National d’Etudes Spatiales (CNES) in France also collaborated on the mission.

The Carnegie Institution of Washington (www.carnegieinstitution.org), a private nonprofit organization, has been a pioneering force in basic scientific research since 1902. It has six research departments: the Geophysical Laboratory and the Department of Terrestrial Magnetism, both located in Washington, D.C.; The Observatories, in Pasadena, California, and Chile; the Department of Plant Biology and the Department of Global Ecology, in Stanford, California; and the Department of Embryology, in Baltimore, Maryland.

Mark Seibert | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>