Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescence microscopy reveals why some antifreeze proteins inhibit ice growth better than others

08.03.2007
Finding could have medical, commercial applications

Antifreeze or “ice structuring” proteins – found in some fish, insects, plants, fungi and bacteria – attach to the surface of ice crystals to inhibit their growth and keep the host organism from freezing to death. Scientists have been puzzled, however, about why some ice structuring proteins, such as those found in the spruce budworm, are more active than others.

Fluorescence microscopy now has shown how those aggressive proteins protect the cells of the insect, which is native to U.S. and Canadian forests.

The finding could have future applications in medical, agricultural and commercial food industries, according to a team of scientists led by Ido Braslavsky, an assistant professor of physics and astronomy at Ohio University, and Peter Davies, a professor of biochemistry and biology at Queen’s University in Canada. They presented the work today at the March meeting of the American Physical Society in Denver, Colo.

In the recent study, Davies’ lab combined spruce budworm and fish antifreeze proteins with a fluorescent tag. Using a fluorescent microscope, Braslavsky and postdoctoral fellow Natalya Pertaya could observe how the proteins interacted with the surfaces of ice crystals. They found that the hyperactive antifreeze protein from the spruce budworm stops ice crystals from growing in particular directions. The antifreeze proteins from fish are less effective.

Antifreeze proteins, especially the hyperactive type found in the spruce budworm and other organisms, have various potential applications, according to Braslavsky. They could be used to preserve organs and tissues for medical applications such as transplants, and also could prevent frostbite. They also can inhibit crystal growth in ice cream – an application already in use by at least one commercial food manufacturer – as well as protect against agricultural frost damage.

The research was funded by Ohio University’s NanoBioTechnology Initiative and the Canadian Institutes of Health Research.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>