Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescence microscopy reveals why some antifreeze proteins inhibit ice growth better than others

08.03.2007
Finding could have medical, commercial applications

Antifreeze or “ice structuring” proteins – found in some fish, insects, plants, fungi and bacteria – attach to the surface of ice crystals to inhibit their growth and keep the host organism from freezing to death. Scientists have been puzzled, however, about why some ice structuring proteins, such as those found in the spruce budworm, are more active than others.

Fluorescence microscopy now has shown how those aggressive proteins protect the cells of the insect, which is native to U.S. and Canadian forests.

The finding could have future applications in medical, agricultural and commercial food industries, according to a team of scientists led by Ido Braslavsky, an assistant professor of physics and astronomy at Ohio University, and Peter Davies, a professor of biochemistry and biology at Queen’s University in Canada. They presented the work today at the March meeting of the American Physical Society in Denver, Colo.

In the recent study, Davies’ lab combined spruce budworm and fish antifreeze proteins with a fluorescent tag. Using a fluorescent microscope, Braslavsky and postdoctoral fellow Natalya Pertaya could observe how the proteins interacted with the surfaces of ice crystals. They found that the hyperactive antifreeze protein from the spruce budworm stops ice crystals from growing in particular directions. The antifreeze proteins from fish are less effective.

Antifreeze proteins, especially the hyperactive type found in the spruce budworm and other organisms, have various potential applications, according to Braslavsky. They could be used to preserve organs and tissues for medical applications such as transplants, and also could prevent frostbite. They also can inhibit crystal growth in ice cream – an application already in use by at least one commercial food manufacturer – as well as protect against agricultural frost damage.

The research was funded by Ohio University’s NanoBioTechnology Initiative and the Canadian Institutes of Health Research.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>