Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find a solar-powered asteroid

08.03.2007
An international research team led by Academy Research Fellow Mikko Kaasalainen has found an asteroid whose rotation receives an extra kick from solar radiation. The asteroid 1862 Apollo's diameter is about 1.5 km, it has a small moonlet, and its orbit crosses that of the Earth.

The team reconstructed Apollo's shape and determined its rotational state using brightness measurements from several years. They found that Apollo's rotation speed steadily increases, and showed that this is due to the re-radiation of solar energy from its surface. The study was published in Nature online on 7 March.

Apollo's rotation period is slightly over three hours, and it decreases only by four thousandths of a second per year, so the analysis required accurate mathematical methods. Because of the acceleration, Apollo is likely to break apart or radically change its figure in the future. It may already have done so earlier, and its present moonlet may be a remnant of such a breakup.

The study confirms that non-gravitational forces are important in the dynamical evolution of asteroids. Re-radiation of solar energy acts as a propulsion engine on the asteroid's surface. There are two coupled manifestations of this phenomenon: the one changing the orbit (the Yarkovsky effect), and the one changing the spin state (the Yarkovsky-Radzievskii-O'Keefe-Paddack or YORP effect). The study confirmed the latter, and the former was detected by radar in 2003. Non-gravitational orbital and spin changes can be significant or even critical over long time intervals. They affect the motion of asteroids that may collide with the Earth. The phenomenon can also be used to estimate the masses of asteroids. Apollo is now the first object larger than one kilometre across for which the propulsion effect has been detected.

Academy Research Fellow Mikko Kaasalainen works in the Centre of Excellence in Inverse Problem Research of the Academy of Finland at the Department of Mathematics and Statistics of the University of Helsinki. The CoE develops and applies mathematical methods in data analysis in various fields from biology to space research. Dr. Kaasalainen coordinates an international solar system research and observation network with researchers from Europe, America, Asia, and Australia. The study published in Nature was carried out by scientists from Finland, Czech Republic, the United States, and Ukraine.

Niko Rinta | alfa
Further information:
http://www.aka.fi

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>