Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Giant that Turned Out to be a Dwarf

08.03.2007
True Identity of a Dwarf Galaxy Revealed

New data obtained on the apparent celestial couple, NGC 5011 B and C, taken with the 3.6-m ESO telescope, reveal that the two galaxies are not at the same distance, as was believed for the past 23 years. The observations show that NGC 5011C is not a giant but a dwarf galaxy, an overlooked member of a group of galaxies in the vicinity of the Milky Way.

The galaxy NGC 5011C is located towards the Centaurus constellation, in the direction of the Centaurus A group of galaxies and the Centaurus cluster of galaxies. The former is about 13 million light-years from our Milky Way, while the latter is about 12 times farther away.

The appearance of NGC 5011C, with its low density of stars and absence of distinctive features, would normally lead astronomers to classify it as a nearby dwarf elliptical galaxy. On the other hand, the galaxy's distance - as reported in the scientific literature - makes it a member of the more distant Centaurus cluster. As such, it would belong to the same cluster as its brighter, redder companion on the sky, the lenticular galaxy NGC 5011B, which is seen almost edge-on.

"This is however a problem," says Ivo Saviane, from ESO, who together with colleague Helmut Jerjen (Mt Stromlo Observatory, Australia) studied this peculiar system, "as despite the small distance between the two galaxies this would imply from their projection on the sky if they were indeed at the same distance - only 45,000 light-years, half the size of our Milky Way - there is no obvious sign of interaction between the two."

Moreover, if the two galaxies were at the same distance, then NGC 5011C would be larger than NGC 5011B in real size, making it a kind of galaxy never seen before.

Saviane and Jerjen therefore used the ESO 3.6-m telescope at La Silla to take images and spectra of the galaxies. The astronomers then found that contrary to what is published, the two galaxies have very different redshifts, with NGC 5011C moving away from us five times slower than its companion on the sky. "This indicates they are at different distances and not at all associated", says Jerjen. "Clearly, NGC 5011C belongs to the close group of galaxies centred around Centaurus A, while NGC 5011B is part of the much farther Centaurus cluster."

The astronomers also established that the two galaxies have very different intrinsic properties. NGC 5011B contains for example more heavy chemical elements than NGC 5011C, and the latter seems to contain only about 10 million times the mass of the Sun in stars and is therefore a true dwarf galaxy. For comparison, our Milky Way contains thousands of times more stars.

"Our new observations with the 3.6-m ESO telescope thus confirm a new member of the nearby Centaurus A group whose true identity remained hidden because of coordinate confusion and wrong distance estimates in the literature for the last 23 years," says Saviane.

With this new distance determination, the astronomers also established that NGC 5011C lies 500,000 light-years away from the dominant galaxy in its group, Centaurus A. Centaurus A (NGC 5128) is the nearest giant elliptical galaxy, at a distance of about 13 million light-years. It is currently merging with a spiral companion galaxy. It possesses a very massive black hole at its centre and is a source of strong radio and X-ray emission. (see ESO 05/00, ESO 04/01, and ESO 13/03)

More Information

The research discussed here is presented in an article in press in the Astronomical Journal, vol. 133, p. 1892: "NGC 5011C: An overlooked dwarf galaxy in the Centaurus A group", by Ivo Saviane and Helmut Jerjen. It is also available at http://www.arxiv.org/abs/astro-ph?papernum=0701280.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2007/pr-09-07.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>