Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Giant that Turned Out to be a Dwarf

08.03.2007
True Identity of a Dwarf Galaxy Revealed

New data obtained on the apparent celestial couple, NGC 5011 B and C, taken with the 3.6-m ESO telescope, reveal that the two galaxies are not at the same distance, as was believed for the past 23 years. The observations show that NGC 5011C is not a giant but a dwarf galaxy, an overlooked member of a group of galaxies in the vicinity of the Milky Way.

The galaxy NGC 5011C is located towards the Centaurus constellation, in the direction of the Centaurus A group of galaxies and the Centaurus cluster of galaxies. The former is about 13 million light-years from our Milky Way, while the latter is about 12 times farther away.

The appearance of NGC 5011C, with its low density of stars and absence of distinctive features, would normally lead astronomers to classify it as a nearby dwarf elliptical galaxy. On the other hand, the galaxy's distance - as reported in the scientific literature - makes it a member of the more distant Centaurus cluster. As such, it would belong to the same cluster as its brighter, redder companion on the sky, the lenticular galaxy NGC 5011B, which is seen almost edge-on.

"This is however a problem," says Ivo Saviane, from ESO, who together with colleague Helmut Jerjen (Mt Stromlo Observatory, Australia) studied this peculiar system, "as despite the small distance between the two galaxies this would imply from their projection on the sky if they were indeed at the same distance - only 45,000 light-years, half the size of our Milky Way - there is no obvious sign of interaction between the two."

Moreover, if the two galaxies were at the same distance, then NGC 5011C would be larger than NGC 5011B in real size, making it a kind of galaxy never seen before.

Saviane and Jerjen therefore used the ESO 3.6-m telescope at La Silla to take images and spectra of the galaxies. The astronomers then found that contrary to what is published, the two galaxies have very different redshifts, with NGC 5011C moving away from us five times slower than its companion on the sky. "This indicates they are at different distances and not at all associated", says Jerjen. "Clearly, NGC 5011C belongs to the close group of galaxies centred around Centaurus A, while NGC 5011B is part of the much farther Centaurus cluster."

The astronomers also established that the two galaxies have very different intrinsic properties. NGC 5011B contains for example more heavy chemical elements than NGC 5011C, and the latter seems to contain only about 10 million times the mass of the Sun in stars and is therefore a true dwarf galaxy. For comparison, our Milky Way contains thousands of times more stars.

"Our new observations with the 3.6-m ESO telescope thus confirm a new member of the nearby Centaurus A group whose true identity remained hidden because of coordinate confusion and wrong distance estimates in the literature for the last 23 years," says Saviane.

With this new distance determination, the astronomers also established that NGC 5011C lies 500,000 light-years away from the dominant galaxy in its group, Centaurus A. Centaurus A (NGC 5128) is the nearest giant elliptical galaxy, at a distance of about 13 million light-years. It is currently merging with a spiral companion galaxy. It possesses a very massive black hole at its centre and is a source of strong radio and X-ray emission. (see ESO 05/00, ESO 04/01, and ESO 13/03)

More Information

The research discussed here is presented in an article in press in the Astronomical Journal, vol. 133, p. 1892: "NGC 5011C: An overlooked dwarf galaxy in the Centaurus A group", by Ivo Saviane and Helmut Jerjen. It is also available at http://www.arxiv.org/abs/astro-ph?papernum=0701280.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2007/pr-09-07.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>