Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Giant that Turned Out to be a Dwarf

08.03.2007
True Identity of a Dwarf Galaxy Revealed

New data obtained on the apparent celestial couple, NGC 5011 B and C, taken with the 3.6-m ESO telescope, reveal that the two galaxies are not at the same distance, as was believed for the past 23 years. The observations show that NGC 5011C is not a giant but a dwarf galaxy, an overlooked member of a group of galaxies in the vicinity of the Milky Way.

The galaxy NGC 5011C is located towards the Centaurus constellation, in the direction of the Centaurus A group of galaxies and the Centaurus cluster of galaxies. The former is about 13 million light-years from our Milky Way, while the latter is about 12 times farther away.

The appearance of NGC 5011C, with its low density of stars and absence of distinctive features, would normally lead astronomers to classify it as a nearby dwarf elliptical galaxy. On the other hand, the galaxy's distance - as reported in the scientific literature - makes it a member of the more distant Centaurus cluster. As such, it would belong to the same cluster as its brighter, redder companion on the sky, the lenticular galaxy NGC 5011B, which is seen almost edge-on.

"This is however a problem," says Ivo Saviane, from ESO, who together with colleague Helmut Jerjen (Mt Stromlo Observatory, Australia) studied this peculiar system, "as despite the small distance between the two galaxies this would imply from their projection on the sky if they were indeed at the same distance - only 45,000 light-years, half the size of our Milky Way - there is no obvious sign of interaction between the two."

Moreover, if the two galaxies were at the same distance, then NGC 5011C would be larger than NGC 5011B in real size, making it a kind of galaxy never seen before.

Saviane and Jerjen therefore used the ESO 3.6-m telescope at La Silla to take images and spectra of the galaxies. The astronomers then found that contrary to what is published, the two galaxies have very different redshifts, with NGC 5011C moving away from us five times slower than its companion on the sky. "This indicates they are at different distances and not at all associated", says Jerjen. "Clearly, NGC 5011C belongs to the close group of galaxies centred around Centaurus A, while NGC 5011B is part of the much farther Centaurus cluster."

The astronomers also established that the two galaxies have very different intrinsic properties. NGC 5011B contains for example more heavy chemical elements than NGC 5011C, and the latter seems to contain only about 10 million times the mass of the Sun in stars and is therefore a true dwarf galaxy. For comparison, our Milky Way contains thousands of times more stars.

"Our new observations with the 3.6-m ESO telescope thus confirm a new member of the nearby Centaurus A group whose true identity remained hidden because of coordinate confusion and wrong distance estimates in the literature for the last 23 years," says Saviane.

With this new distance determination, the astronomers also established that NGC 5011C lies 500,000 light-years away from the dominant galaxy in its group, Centaurus A. Centaurus A (NGC 5128) is the nearest giant elliptical galaxy, at a distance of about 13 million light-years. It is currently merging with a spiral companion galaxy. It possesses a very massive black hole at its centre and is a source of strong radio and X-ray emission. (see ESO 05/00, ESO 04/01, and ESO 13/03)

More Information

The research discussed here is presented in an article in press in the Astronomical Journal, vol. 133, p. 1892: "NGC 5011C: An overlooked dwarf galaxy in the Centaurus A group", by Ivo Saviane and Helmut Jerjen. It is also available at http://www.arxiv.org/abs/astro-ph?papernum=0701280.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2007/pr-09-07.html

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>